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Abstract

In this paper, we present results on the widely applicable topic of falling axisymmetric ferrofluids.

Combining two independent widely studied problems: falling viscous fluids and axisymmetric

ferromagnetic flows, a reduced order model is developed and the flow stability is considered.

The problem is further generalized by considering the effect of displacing the wire, and running

time-varying and stochastic currents through it. Finally, a pseudo-spectral method is developed

to resolve the nonlinear initial boundary value problems.
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1. Introduction

In the last few decades, the fields of falling viscous flows and ferrofluids have seen remarkable

progress, with numerous applications in engineering, biomedicine, and environmental sciences.

A thorough understanding of the dynamics and stability of coating fluid films falling under

gravity’s influence has been achieved through the work of various researchers, including Craster

and Matar, Duprat et al., and Kliakhandler et al. (10; 13; 28; 53). Meanwhile, the study

of ferrofluids has also experienced significant advancements, as demonstrated by the theories

developed by Rosensweig (45) and others (3; 5; 7; 9).

While the majority of the literature on ferrofluids has focused on the inviscid case, recent re-

search by Cornish (8) and Ferguson Briggs (16) has shifted attention to the study of viscous

effects in ferrofluids. This transition has led to new insights and an enhanced understanding of

the complexities involved in ferrofluid systems.The ferrofluid literature often neglects gravita-

tional body forces, which are essential in the study of falling viscous fluids.

This Master’s thesis aims to bridge the gap between these two areas of research by addressing

a natural question: how can the long-wave theories for falling viscous fluids be combined with

the ferrofluid results? Specifically, this study will investigate the behavior of axisymmetric

ferrofluids that coat a small conducting wire and fall under the influence of gravity. To achieve

this objective, the research will draw upon and extend existing theoretical frameworks, numerical

methods, and experimental data, as well as the foundational works on fluid dynamics and

electromagnetism by Batchelor (6), Grant and Phillips (20), and (54). Ultimately, this work

will contribute to a more comprehensive understanding of the interaction between ferrofluids

and gravitational forces and may lead to novel applications and innovations in related fields.
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Before continuing to the next section we will present a brief introduction to the field of ferroflu-

ids, as this is not covered in most undergraduate and graduate Fluid Dynamics courses.

A ferrofluid is a colloidal suspension of nanoscale ferromagnetic particles dispersed in a carrier

fluid, typically an organic solvent or water (45) . These particles, often composed of materials

such as magnetite, or cobalt ferrite, are coated with a surfactant to prevent aggregation and

ensure their even distribution within the fluid (45) . Due to their magnetic nature, ferrofluids

exhibit unique and fascinating properties. for instance, in the presence of external magnetic

fields, they respond by forming of spikes and patterns as a result of an energy minimisation

procedure. (45; 54). These intriguing characteristics have led to a diverse range of applica-

tions, including sealing and lubrication in rotating machinery, targeted drug delivery, magnetic

resonance imaging (MRI) contrast agents, and cooling systems for electronic devices (9; 45).

It is important to note ferrohydrdynamics is not the same as magnetohydrodynamics (MHD), a

research area the reader might be more familiar with due to its central role in astrophysical fluid

dynamics. Ferrohydrodynamics and magnetohydrodynamics (MHD) both involve the study

of fluids in the presence of magnetic fields, but they differ fundamentally in their underlying

physics and applications. Ferrofluids, as mentioned earlier, are colloidal suspensions of nanoscale

ferromagnetic particles dispersed in a carrier fluid (45). Their unique properties arise from

the interaction between the dispersed magnetic particles and applied external magnetic fields

(45). In contrast, magnetohydrodynamics deals with the macroscopic behavior of electrically

conducting fluids, such as plasmas, liquid metals, and some electrolytes, in the presence of both

magnetic and electric fields (12; 42). MHD studies the interplay between fluid dynamics and

electromagnetism, taking into account the fluid’s motion, electric currents, and the induced

magnetic fields (12; 42).

While ferrofluids are primarily used in applications such as sealing, lubrication, drug delivery,

and cooling systems (9; 45), MHD has broader applications in areas such as astrophysics, geo-

physics, and engineering. MHD is essential for understanding phenomena like solar flares, the

Earth’s magnetic field, and the behavior of plasmas in nuclear fusion reactors (12; 42). Although

both ferrofluids and MHD involve the interaction of fluids with magnetic fields, their distinct

material properties, scales, and underlying physical mechanisms lead to different research fo-
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cuses and practical applications.

Finally, we will briefly comment on viscous falling flows, also known as falling films or coating

flows, involve the study of fluid films flowing down solid surfaces or fibers under the influence

of gravity. Over the past few decades, significant progress has been made in understanding

the fundamental physics, stability, and dynamics of these flows (4; 26). Early investigations

primarily focused on the behavior of thin films flowing down flat, inclined, or curved surfaces.

Subsequent research expanded the scope to include viscous beads flowing down vertical fibers,

leading to the development of long-wave theories and the investigation of various instabilities,

such as absolute and convective instabilities (10; 13; 28; 53).

Recent studies have also considered the effects of various factors on viscous falling film flows,

including viscosity contrasts, and non-Newtonian fluids (2; 4). Furthermore, the development

of advanced experimental techniques and numerical simulations has allowed researchers to gain

deeper insights into the complex behavior of these flows in real-world situations (18; 48). The

progress made in the field of viscous falling flows has led to a wide range of applications,

including coating processes in the manufacturing industry, heat exchangers, and biomedical

devices (2; 26).

Now the scene is set to start our search for the answer to our research questions. In the first

two chapters the equations governing the problem of falling ferrofluids will be derived and

nondimensionalised. This will be followed by a thorough discussion of the problem in the long

wave limit, where the axial length scale is much larger than the radial length scale. Then,

the Stokes limit will be analysed to compare the results with the long wave limit. Finally,

several complexifications of the problem are explored: a tranlsating wire, a time dependent

magnetic field and the stochastic current case. The penultimate chapter is a brief showcase of

the numerical methods used throughout the text and the final chapter presents the conclusions

and future work avenues of the investigation.
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2. Governing equations

In this section we will derive the governing equations and the corresponding boundary conditions

for the problem in mind. Consider a situation as shown in Figure 2.1. Here a viscous fluid

coats a thin conducting wire of dimensional radius α̂. We define our axisymmetric cylindrical

coordinates coordinates with the z axis pointing downwards (i.e. gravity acts in the positive

direction). Several equations must be considered to fully close the free boundary problem. First,

we must consider the Maxwell equations for the Electromagnetic field induced by the current in

the wire. Second, we must consider the continuity equation to satisfy conservation of mass in

the fluid bulk. Further, we consider Newton’s second law in continuum form to derive a dynamic

equation for the fluid variables, integrating the ferrohydrodynamic effects. Finally, we derive

the accompanying boundary conditions at the wire surface and the free boundary at r̂ = Ŝ. In

this text, the hatted variables represent dimensional variables unless stated otherwise. We will

begin by considering the Maxwell equations, followed by the Navier Stokes equations.

α̂

η(z, t)

I(t)

g⃗

Figure 2.1.: A schematic of the problem.
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2.1. Maxwell equations and the electromagnetic field

As first derived by James Clerk Maxwell (22), the electromagnetic field satisfies the Maxwell

equations (20; 54), given by (2.1)

∇ · Ê =
ρ̂e
ϵ0

∇ · B̂ = 0

∇× Ê = −∂B̂
∂t̂

∇× Ĥ = µ0Ĵ+
1

c2
∂Ê

∂t̂

(2.1)

In what follows we assume the electromagnetic field is not affected by the fluid variables, in

particular the fluid is non conducting (45). In equation 2.1 Ê is the electric field, Ĥ is the

magnetic field, B̂ is the induced magnetic field and Ĵ is the electric current density. Furthermore

the scalar parameters are:

• ρ̂e is the electric charge density of free space.

• ϵ0 is the electric permittivity of free space, given by ϵ0 ≈ 8.85× 10−12 C2N−1m−2.(20)

• µ0 is the magnetic permeability of free space, given by µ0 = 2αh
e2c

(54), with α the fine

structure constant, c the speed of light in a vacuum and e the elementary charge and h

the Planck constant. Numerically, µ0 ≈ 4π × 10−7 NA−2. (20)

• The speed of light in a vacuum c = (µ0ε0)
−1/2 ≈ 3× 108 ms−1. (25)

We further assume that the electric charge density is everywhere zero, so that the electric field

is solenoidal. The magnetization vector M̂ is defined by the following relationship between the

magnetic field and the induced magnetic field (16; 45):

B̂ = µ0(Ĥ+ M̂) (2.2)

2.1.1. Colinearity

We will assume, as is standard in the ferrofluid literature is collinearity. This is that the

induction vector M̂ and the magnetic field Ĥ are parallel (9; 16; 45)

M̂ = χĤ (2.3)



6

and the dimensionless proportionality constant χ is known as the magnetic susceptibility. In

this investigation it is further assumed that χ is independent of time, position and the magnitude

of the field.

2.1.2. Jefimenko Integrals

We can construct the solution to the Maxwell equations using the Jefimeko integrals (under

the Coulomb/Lorenz gauge). These are derived from the scalar and magnetic Liénard-Wiechert

potentials, and more details are included in appendix A.2.1. In the case where ρ̂e = 0, but the

current Ĵ ̸= 0, these reduce to (20; 54)

B̂(x̂, t̂) =
µ0
4π

∫ [
Ĵ(x̂′, t̂r)× (x̂− x̂′)

|x̂− x̂′|3
− x̂− x̂′

|x̂− x̂′|2
× 1

c

∂Ĵ(x̂′, t̂r)

∂t̂

]
d3x̂′

Ê(x̂, t̂) =− 1

4πε0

∫
1

|x̂− x̂′|c2
∂Ĵ(x̂′, t̂r)

∂t̂
d3x̂′

(2.4)

where the integrals are taken over R3 and the retarded time t̂r is defined as

t̂r = t̂− |x̂− x̂′|
c

≈ t+O(1/c) (2.5)

In our case, Ĵ will always point in the z direction, so that Ê will always point in the z direction

as well, and as the problem is axisymmetric the triple integrals can be reduced into double

integrals by transforming to cylindrical coordinates and integrating out the angular differential.

2.1.3. Constant electric current

In the case of an infinitely long wire of radius α̂ carrying a constant current I, in the magne-

tostatic limit we recover the following well known azimuthal solution to the Maxwell equations

(45): B̂ = (0, B̂ϕ, 0)
⊺ and

B̂ϕ =


µ0Ir̂
2πα̂2 r̂ < α̂

µ0I
2πr̂ r̂ > α̂

(2.6)

This is because Ĵ = 0 everywhere except in the wire itself, and Ê = 0 identically. We are only

interested in the magnetic field outside of the wire, which satisfies the 1
r̂ law.
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2.1.4. Time-dependent electric current

Let us assume there is an alternating current in the wire, so that I(t) = I0 cos(Ωt̂)ez. We can

compute the electromagnetic using the aforementioned Jefimenko’s equations, in the case where

ρ̂e = 0 as given by 2.4. However, as we are dealing with non-relativistic velocities and distances,

c ≈ 3 · 108 ms−1 is much larger than any of the characteristics speeds in our problem. This

motivates a Taylor expansion of the integrand for B̂, to second order in the first summand (Ĵ)

and first order in the second summand (∂t̂Ĵ), in powers of 1
c . More precisely, we expand

Ĵ(x̂, t̂r) = Ĵ(x̂, t̂) + ∆t̂
∂Ĵ(x̂, t̂)

∂t̂
+

1

2

∂2Ĵ(x̂, t̂)

∂t̂2
(∆t̂)2 (2.7)

With ∆t̂ = t̂r − t̂ = − |x̂−x̂′|
c . The first derivative terms cancel and we obtain

B̂(x̂, t̂) =
µ0
4π

∫ [
J(x̂, t̂)× (x̂− x̂′)

|x̂− x̂′|3
+O

(
1

c2

)]
d3x̂′ =

(
0,
µ0I

(
t̂
)

2πr̂
+O

(
1

c

)
, 0

)⊺

(2.8)

so to leading order the magnetic field has the same form as the time independent case, with

some small corrections (recall c ≈ 3 · 108m · s−1)

Electric field

At first glance, it seems like we can neglect the electric field to leading order, as it contains a 1
c2

factor in the integrand. However, it is also divided by ϵ0, and we must consider the scale of the

quantity 1
ϵ0c2

and we cannot compare this to O(1), but to O(µ0), for this is the leading order

scale of the magnetic field, and the scale of the electromagnetic field in our problem. Indeed,

as c2 = 1
ϵ0µ0

it turns out that Ê = O(µ0), and we must consider it when the current changes in

time. Recall from the Jefimenko equations 2.4 that

Ê(x̂, t̂) = −µ0
4π

∫
1

|x̂− x̂′|
∂J(x̂, t̂)

∂t̂
d3x̂′ (2.9)
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The appereance of the retarded time and its dependence on c−1 suggests that we Taylor expand

the integral and proceed as before. To leading order

Ê(x̂, t̂) = −µ0
4π

∫ [
1

|x̂− x̂′|
∂Ĵ(x̂, t̂)

∂t̂
+O

(
1

c

)]
d3x̂′ (2.10)

However, this is problematic, as the integral will not be convergent. Therefore, an alternative

procedure to extract the leading order electric field is required. From the above expression

we see that Ê and Ĵ are collinear, motivating an Ansatz for the electric field that is purely

longitudinal and axisymmetric (independent of φ): Ê = (0, 0, Êz(r̂, t̂))
⊺. Next from the third

Maxwell equations (Faraday’s law) we can see that

∇× Ê = −∂B̂
∂t̂

=

(
0,
I0µ0Ωsin(Ωt̂)

2πr̂
, 0

)⊺

(2.11)

And taking into account the form for Ê, we see that

∂Êz

∂φ
= 0 − ∂Êz

∂r̂
=
I0µ0Ωsin(Ωt̂)

2πr̂
(2.12)

Integrating this for Êz, and take into account that the integration constant f might be a function

of t

Êz = −I0µ0Ωsin(Ωt̂)

2π
log r̂ + f(t̂) +O(1/c) (2.13)

where we know f is not a function of ẑ from symmetry.

2.1.5. Exact Solution to the full Maxwell equations and higher order

approximation

Although the leading order behaviour is sufficient for our setting, using powerful symbolic

calculators like Mathematica we can integrate the Jefimenko equations 2.4. Recall that the

current density is non-zero in the longitudinal direction, and in particular given by

Ĵ =

(
0, 0,

I0
A

cos(Ωt̂)

)⊺

(2.14)

Mathematica
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Electric Field

Where A = Wire cross sectional area. We can first integrate the second Jefimenko equation,

listed here for convenience

Ê(x̂, t̂) = −µ0
4π

∫
1

|x̂− x̂′|
∂Ĵ(x̂, t̂)

∂t̂
d3x̂′

Introducing cylindrical coordinates, the volume integral can be explicited and factored to

Êz =
µ0I0Ω

4πA

∫ 2π

0
dφ′

∫ α̂

0
r̂′dr̂′

∫ ∞

−∞
dẑ′

[
1√

r̂2 + (ẑ − ẑ′)2
sinΩ

(
t̂−

√
r̂2 + (ẑ − ẑ′)2

c

)]

This integral is evaluated in detail in appendix A.2.2. The result is

Êz =
I0µ0Ω

2π

(
sin(Ωt̂)I1(r̂)− cos(Ωt̂)I2(r̂)

)
with

I1(r̂) =
πc

Ωr̂
G0,2

3,1

1
2 ,

1
2 0

0

∣∣∣∣∣∣∣
4c2

Ω2r̂2


= log

(
2c

r̂Ω

)
J0

(
r̂Ω

c

)
−Hypergeometric0F1Regularized(1,0)

(
1,− r̂

2Ω2

4c2

) (2.15)

I2(r̂) =
π

2
J0

(
Ωr̂

c

)
(2.16)

Where G0,2
3,1 is the Meijer-G function (35), ”Hypergeometric0F1Regularized” is regularized con-

fluent hypergeometric function F0,1(a; z)/Γ(a) (44) and J0 is a Bessel function of the first kind

of order 0. Hence we have obtained an exact expression for the electric field Ê. In our case

however, c is large compared to the other physical variables so we can expand I2(r̂) in powers

of c

I2 =
π

2
− πΩ2r̂2

8c2
+O

(
1

c3

)
(2.17)
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repeating the same expansion for I1(r̂) we discover the leading order solution has the expected

logarithmic dependence on r̂ from 2.13, and furthermore, there is no O(c−1) term in any of the

expansions. (If you inspect at Ampere’s law this makes sense, because the electric field there

acts in second order in c−1, so there is no ”room” for an O(c−1) term in any of the fields, as

this would automatically mean they have an O(c) term)

I1 = (−γ + log(c)− log(r̂Ω) + log(2)) +O

(
1

c2

)
(2.18)

Further, from the leading order terms for I1 and I2 we can deduce the f(t̂) term hypothesized

in the previous section. Indeed, we see

f(t̂) =
I0µ0Ω

2π

(
sin(Ωt̂)(log(2c)− log(Ω)− γ)− cos(Ωt̂)

π

2

)

Magnetic field

This is slightly more convoluted than the calculation for the electric field, as we must consider

the contribution from both Ĵ and ∂t̂Ĵ terms to the Jefimenko integral (2.4). First we consider

the contribution from the current density, given by

µ0
4π

∫ [
Ĵ(x̂, t̂)× (x̂− x̂′)

|x̂− x̂′|3

]
d3x̂′ (2.19)

Inspecting the cross product in the integrand we can deduce that only the second component will

be non-zero. Thus we proceed by only computing the itnegral for this component. Integrating

out the radial and azimuthal contributions, we reach

=
µ0
4π

∫ ∞

−∞

[
I(t̂r)r̂

(r̂2 + (ẑ − ẑ′)2)3/2

]
dẑ′ (2.20)

Using the same change of variables as for the electric field this simplifies to

µ0I0r̂

2π

∫ ∞

r

[
cos(Ω(t̂− u

c ))

u2
√
u2 − r̂2

]
du (2.21)
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we can now proceed with the symbolic calculations, reaching a very complicated analytical

expression, available in the Appendix A.2.3. However, it can be expanded to

I0µ cos(Ωt̂)

2πr̂
+
I0µΩsin(Ωt̂)

4c
+O

(
1

c2

)
(2.22)

so in particular we recover the expected solution to leading order. Now moving to the second

part of the integral in Jefimenko’s formula, we consider the contribution of ∂tJ. The integral is

given by

−µ0
4π

∫ [
x̂− x̂′

|x̂− x̂′|2
× 1

c

∂J(x̂, t̂)

∂t̂

]
d3x̂′ = − µ0

4πc

∫ ∞

−∞

[
I ′(t̂r)r̂

r̂2 + (ẑ − ẑ′)2

]
dẑ′ (2.23)

We will proceed in the same way as for the other two integrals. Integrating our the radial and az-

imuthal components we apply the same change of variables.The result after the aforementioned

change of variables is

µ0I0r̂Ω

2πc

∫ ∞

r

[
sin(Ω(t̂− u

c ))

u
√
u2 − r̂2

]
du (2.24)

We can split the integral in two simpler integrals using identities for the sine function.

µ0I0r̂Ω

2πc

(
sinΩt

∫ ∞

r

[
cos(Ωu

c )

u
√
u2 − r2

]
du− cosΩt

∫ ∞

r

[
sin(Ωu

c )

u
√
u2 − r2

]
du

)

=
µ0I0r̂Ω

2πc

(
sinΩt̂I3(r̂)− cosΩt̂I4(r̂)

) (2.25)

The exact form of I3 and I4 is given in the appendix A.2.3, we are more interested in the

expansions:

I3(r̂) =
π

2r̂
− πΩ

2c
+O

(
1

c2

)
(2.26)

It is important to note the 1/c factor in equation 2.23, so only the leading order term is relevant

to approximated the first order corrections to the magnetic field. Now, for the second integral,

expanding in powers of c

I4(r̂) = −(Ω(− log(c) + log(r̂) + log(Ω) + γ − 1− log(2)))

c
+O

(
1

c2

)
= −Ω

c

(
γ − 1 + log

(
Ωr̂

2c

))
+O(c−2)

(2.27)



12

Considering again the 1/c factor in 2.23 we see this does not contribute to the first order

correction.

2.1.6. Summary of the approximations to the electromagnetic field

So we deduce that to leading order the non-zero components of the electric and magnetic fields

are:

B̂ϕ(r̂, t̂) =
I0µ0 cos(Ωt̂)

2πr̂
+O

(
1

c

)
Êz(r̂, t̂) =

I0µ0Ω

2π

(
sin(Ωt̂)

(
−γ + log

(
2c

Ωr̂

))
− cos(Ωt̂)

π

2

)
+O

(
1/c2

) (2.28)

We can indeed check this satisfies the Maxwell equations to leading order. We know Faraday’s

Law is satisfied by construction. Both of the fields are solenoidal, so the first two equations are

satisfied. Finally, for Ampere’s law, we know that to leading order the magnetic field satisfies

∇× Ĥ = µ0Ĵ (2.29)

and adding 1
c2

∂2Ê
∂t̂2

, this is O
(
log c
c2

)
at worst, which is not leading order, and smaller than O(1/c).

An important remark is that from here we observe that the length scale associated with the

oscillating current (∼ c
Ω) is much larger than that lengthscale associated with the fluid flow (the

radial lengthscale ∼ R). This means that the electric field can be taken to be quasi-steady in

space, i.e. slowly varying.

A second important remark, is that the electric field can be made negligible, as Ω can be chosen

so that both terms ∼ Ω logΩ and ∼ Ω log c are arbitrarily small, given that limx→0 x log x = 0.

This is useful as it will allow us to consider the electric field as negligible and greatly reduce

the complexity of some of our equations. Moreover, r̂ is bounded away from zero, so the log

singularity is not dangerous.
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2.2. Fluid equations

Once the equations for the electromagnetic field are established and solved we can turn our

attention to the equations governing the fluid variables: ρ̂, p̂, û, density, pressure and velocity

respectively. We will first derive the equations for the bulk. As stated previously, a hat denotes

a dimensional variable. Once this is done we will turn our attention to the conditions the

variables must satisfy on the boundaries of the domain. Although in the present study we only

consider the second fluid as being passive, the governing equations are derived for two arbitrary

fluids. In particular, the index ι = 1 labels the interior fluid, bounded between α̂ < r̂ < Ŝ, and

the index ι = 2 labels the exterior fluid, located in the region r̂ > Ŝ. Further, the axisymmetric

velocity vector is given by û(ι) = (û(ι)(r̂, ẑ, t̂), 0, ŵ(ι)(r̂, ẑ, t̂))⊺

2.2.1. Bulk equations

In this investigation it is assumed at all times that the fluid is incompressible, that is that

Dρ̂(ι)

Dt̂
= ∂t̂ρ̂

(ι) + (û(ι) · ∇)ρ̂(ι) = 0 (2.30)

Where we have defined the material derivative D
Dt̂

. With this in mind the equations for the bulk

of fluid in the region α̂ < r̂ < Ŝ can be derived. By considering the conservation of mass for an

arbitrary control volume and using the incompressibiliy condition 2.30, the continuity equation

is derived. In differential form it is given by (6)

∇ · û(ι) = 0 (2.31)

Considering now conservation of momentum, with a similar argument and applying Gauss’

divergence theorem to the integrals resulting from surface forces on arbitrary control volumes,

we can derive the second Navier-Stokes equation, which we write in the following form (6; 8)

for an incompressible fluid:

ρ̂(ι)
Dû(ι)

Dt̂
= ∇ · T̂ + ρ̂(ι)f (2.32)
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where D
Dt denotes the material derivative as given in eq. (2.30). The stress tensor T can be split

into four components, representing the pressure, viscous stresses, the ferrofluid stress tensor and

the Maxwell stress tensor:

T̂ = T̂p + T̂v + T̂f + T̂m (2.33)

First, the pressure term is just an isotropic tensor T̂p = −p̂(ι)δij and its divergence is given by

the pressure gradient ∇ · T̂p = −∇p̂. The viscous stress tensor is (6)

T̂v = µ(ι)(∇û(ι) + (∇û(ι))T )

where µ(ι) is the dynamic viscosity of the fluid. Taking the divergence of this tensor its con-

tribution to equation 2.32 is found to be µ(ι)∇2û(ι), where ∇2 is the vector Laplacian. For

convenience we write the gradient of the velocity:

∇û =


∂r̂û 0 ∂ẑû

0 û
r̂ 0

∂r̂ŵ 0 ∂ẑŵ


The ferrofluid stress tensor, is defined by (45)

T̂f = −µ0

∫ Ĥ

0
ν

(
∂M̂

∂ν

)
Ĥ,Θ̂

dĤ +

∫ Ĥ

0
M̂dĤ

 δij = −µ0(p̂s + p̂m)δij (2.34)

Here, Ĥ = |Ĥ|, M̂ = |M̂| and ν is the specific volume of ferrofluid particles in the fluid and

Θ̂ is the temperature. For isothermal flow fields we can compute the divergence of each of the

pressures. For the fluid magnetic pressure, we reach

∇p̂m = −µ0∇
∫ Ĥ

0
M̂dĤ = −µ0M̂∇Ĥ (2.35)

The Maxwell stress tensor is is given in general by (25)

T̂m = ϵ0ÊÊ⊺ + B̂Ĥ⊺ − 1

2
(µ0|Ĥ|2+ϵ0|Ê|2)δij (2.36)
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In the magnetostatic case, the Maxwell stress tensor simplifies to (8):

T̂m = B̂Ĥ⊺ − 1

2
µ0|Ĥ|2δij (2.37)

and in general it the divergence of this tensor can be computed to obtain its contributions to

the Navier Stokes equations. Considering first the Magnetostatic case

∇ · (B̂Ĥ⊺)−∇ · (1
2
µ0|Ĥ|2δij) = Ĥ∇ · B̂+ (B̂ · ∇)Ĥ− 1

2
µ0∇|Ĥ|2 (2.38)

The first of the three terms will be zero as a consequence of the Maxwell equations. Now recall,

B̂ = µ0(Ĥ+ M̂), so that

∇ · T̂m = µ0((Ĥ+ M̂) · ∇)Ĥ− 1

2
µ0∇|Ĥ|2= µ0(Ĥ · ∇)Ĥ+ µ0(M̂ · ∇)Ĥ− 1

2
µ0∇|Ĥ|2 (2.39)

and we can cancel the first and third terms using the following vector identity (34)

A× (∇×A) = (A · ∇)A− 1

2
∇(A ·A) (2.40)

with A = Ĥ and recalling the second Maxwell equation for the electrostatic limit, ∇× Ĥ = 0,

to get

∇ · T̂m = µ0(M̂ · ∇)Ĥ (2.41)

This will cancel with ∇p̂m ≈ ∇ · T̂f from equation 2.35, so that in the fluid bulk we have

standard Navier-Stokes equation for a Newtonian fluid:

ρ̂(ι)
Dû(ι)

Dt̂
= −∇p̂(ι) + µ(ι)∇2û(ι) + ρ̂(ι)f (2.42)

By taking the divergence of eq. (2.42) we can find a Poisson equation for the pressure in the

fluid bulk

ρ̂(ι)

(
(û(ι))2

r̂2
+ (∂rû

(ι))2 ++2∂zû
(ι)∂rŵ

(ι) + (∂zŵ
(ι))2

)
= −∇2p̂(ι) (2.43)
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2.2.2. Boundary Conditions

We have derived four (one + three) partial differential equations for the fluid variables: p̂, û. To

fully define the evolution of the system boundary conditions on the boundaries of the domain

of the problem must be specified. Starting at the wall of the cylindrical wire, situated at r̂ = α̂,

the no slip condition is imposed, as is standard in problems with viscous fluids (10; 28)

û = 0 at r̂ = α̂ (2.44)

The boundary conditions on the moving boundary, situated at r̂ = Ŝ(t̂, ẑ), are more intricate. As

the moving boundary must be computed as part of the solution we require additional equations.

The most straightforward condition is the kinematic condition (6)

DŜ

Dt̂
= ∂t̂Ŝ + (û · ∇)Ŝ = 0 at r̂ = Ŝ (2.45)

To obtain additional equations we will impose a stress balance. The curvature of the surface

will induce a normal stress jump. It is useful to compute the unit normal and tangential vector

to the moving surface. Recall the moving boundary Ŝ = Ŝ(ẑ, t̂) in the axisymmetric framework

will have normal and tangential vectors given by (the subscript denotes differentiation by ẑ) (8)

n =
1√

1 + Ŝ2
ẑ

(
1, 0,−Ŝẑ

)⊺
t =

1√
1 + Ŝ2

ẑ

(
Ŝẑ, 0, 1

)⊺

In general, the aforementioned condition on the stress across the interface reads (6; 8)

n · [T̂ ]21 = σn(∇ · n)−∇σ (2.46)

where [f ]21 = f2 − f1 denotes the difference or jump in a quantity between the interface. Two

scalar equations can be obtained from 2.46 by considering the normal and tangential components

of the equation. Considering the tangential component first,

n · [T̂ ]21 · t = ∇σ · t = 0 (2.47)
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As we are assuming there are no gradients in the surface tension, ∇σ = 0. This dot product will

only select entries in the offdiagonal of T , so we can forget momentarily about all the elements

of the tensor multiplied by δij , so in particular the entire ferrofluid stress tensor T̂f and the

pressure term. Further, we assume the outer fluid is not magnetic, so M(2) = 0, and we can

find that (8)

n · [T̂m]21 · t = 0 (2.48)

hence the only contributing comes from viscosity, giving the final form of the stress condition

(see appendix A.3.1 for a detailed calculation, and dropping the index in the velocities for

convenience.)

n · [T̂v]21 · t =

[
µ(ι)

1 + Ŝ2
ẑ

(
2Ŝẑ (∂r̂û− ∂ẑŵ) +

(
1− Ŝ2

ẑ

)
(∂ẑû+ ∂r̂ŵ)

)]2
1

= 0 (2.49)

When the second fluid is passive, as is assumed in this investigation, the above tangential stress

condition reduces to

µ(1)

1 + Ŝ2
ẑ

(
2Ŝẑ (∂r̂û− ∂ẑŵ) +

(
1− Ŝ2

ẑ

)
(∂ẑû+ ∂r̂ŵ) = 0

)
= 0

=⇒ 2Ŝẑ (∂r̂û− ∂ẑŵ) +
(
1− Ŝ2

ẑ

)
(∂ẑû+ ∂r̂ŵ) = 0

(2.50)

For the normal stress balance, also known as the Laplace-Young equation, taking the dot product

of eq. (2.46) and n we obtain

n · [T̂ ]21 · n = σ∇ · n (2.51)

The left hand side will select diagonal entries of the stress tensor, so we will have the dynamic

pressure p for both fluids, n · [T̂v]21 · n, n · [T̂f ]21 · n and n · [T̂m]21 · n contributions. Each of

these terms can be associated to a pressure. The capillary pressure, i.e. the right hand side in

Laplace-Young eq. (2.51), is evaluated to be (detailed calculation in appendix A.3.2)

p̂c = σ∇ · n =
σ√

1 + Ŝ2
ẑ

(
1

Ŝ
− Szz

1 + Ŝ2
ẑẑ

)
(2.52)
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The viscous pressure (detailed calculation in appendix A.3.2)

p̂v = n · T̂v · n =
2µ

1 + Ŝ2
ẑ

(∂r̂û− Ŝẑ(∂ẑû+ ∂r̂ŵ) + Ŝ2
ẑ∂ẑŵ) (2.53)

Furthermore, the magnetic normal pressure is evaluated to be

p̂n = n · T̂m · n =
1

2
µ0(n ·M(1))2 (2.54)

We still have pm the fluid magnetic pressure and ps, the magnetorestrictive pressure as defined

above

n · T̂f · n = p̂m + p̂s (2.55)

We can write the Laplace-Young equation in terms of the pressures

p̂(1) − p̂(2) + p̂m + p̂s + p̂n + p̂(2)v − p̂(1)v = p̂c at r̂ = Ŝ (2.56)

This simplifies greatly in the case the outer fluid is passive. Then p
(2)
v = 0 and p(2) = pa,

the atmospheric pressure which we can set to zero without loss of generality. Moreover, the

magnetorestrictive pressure ps is negligible in the non-relativistic limit. Finally, we require

continuity of velocities across the interface:

[û · t]21 = 0 at r̂ = Ŝ

[û · n]21 = 0 at r̂ = Ŝ

(2.57)

2.3. Summary of the governing equations

In this section we list the governing equations, expanding the vector quantities for the case of

axisymmetrical flow, where û = (û, 0, ŵ)⊺. For continuity, equation (2.31) is

∂r̂û
(ι) +

1

r̂
û(ι) + ∂ẑŵ

(ι) = 0 (2.58)
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For the momentum equations, now with the stress tensor also expanded, equation (2.32) is

∂t̂û
(ι) + û(ι)∂r̂û

(ι) + ŵ(ι)∂ẑû
(ι) = − 1

ρ̂(ι)
∂r̂p̂

(ι) +
µ(ι)

ρ̂(ι)

(
∂2r̂ û

(ι) +
1

r̂
∂r̂û

(ι) + ∂2ẑ û
(ι) − û(ι)

r̂2

)

∂t̂ŵ
(ι) + û(ι)∂r̂ŵ

(ι) + ŵ(ι)∂ẑŵ
(ι) = − 1

ρ̂(ι)
∂ẑ p̂

(ι) +
µ(ι)

ρ̂(ι)

(
∂2r̂ ŵ

(ι) +
1

r̂
∂r̂ŵ

(ι) + ∂2ẑ ŵ
(ι)

)
+ g

(2.59)

The no slip condition is as simple as before,

û(α̂) = 0 ŵ(α̂) = 0 (2.60)

The kinematic condition (2.45) is expanded to give

Ŝ + ŵŜẑ = û on r̂ = Ŝ (2.61)

Continuity of velocities on r̂ = Ŝ gives [û · t]21 = [û · n]21 = 0. The tangential stress condition

was already expanded in equation (2.50). It is repeated here for convenience

2Ŝẑ (∂r̂û− ∂ẑŵ) +
(
1− Ŝ2

ẑ

)
(∂ẑû+ ∂r̂ŵ) = 0 on r̂ = Ŝ (2.62)

Finally, the normal stress balance was already expanded in equation (2.56), repeated here for

convenience

p̂− 2µ

1 + Ŝ2
ẑ

(∂r̂û−Ŝẑ(∂ẑû+∂r̂ŵ)+Ŝ2
ẑ∂ẑŵ) =

σ√
1 + Ŝ2

ẑ

(
1

Ŝ
− Ŝẑẑ

1 + Ŝ2
ẑ

)
−µ0χB

2

8π2Ŝ2
on r̂ = Ŝ (2.63)
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3. Nondimensionalisation of the equations

Once the governing equations have been introduced it is convenient to introduce nondimensional

variables to work with them. This raises an interesting point: what should the characteristic

length and time scales be? In this study the characteristic velocity is chosen from a balance

between gravity and viscosity. In particular, the reference velocity is

V =
ρ̂gR2

µ(1)

and the reference pressure is given by the hydrostatic pressure balance, ρ̂gR.

3.1. Standard nondimensionalisation

As a first guess, the following scalings are chosen, using only the radial lengthscale, R:

r̂ = Rr ẑ = Rz û = V ŵ = V w t̂ =
R

V
t p̂ = ρ̂gRp

The hatted variables are dimensional, the standard variables are dimensionless. Applying these

scalings to the equations in the previous section a set of nondimensional governing equations is

derived. In particular, the continuity equation, no slip condition and kinematic equation remain

unchanged (i.e. no nondimensional groups appear), as they are not dynamic equations:

1

r
∂r(ru) + ∂zw = 0

∂tS + wSz = u on r = S(z, t)

u = 0 and w = 0 on r = α =
α̂

R

(3.1)
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However, for the Navier-Stokes equations the Reynolds number Re (defined below) will appear

in the equations.

Re(ut + uur + wuz) = −pr + (urr + uzz +
1

r
ur −

u

r2
)

Re(wt + uwr + wwz) = 1− pz + (wrr +
1

r
wr + wzz)

(3.2)

For the dynamic boundary conditions, the tangential stress remains unchanged from the dimen-

sional form, as the outer fluid is taken as passive, implying:

(1− S2
z )(uz + wr) + 2Sz(ur − wz) = 0 on r = S(z, t) (3.3)

However a number of nondimensional quantities appear in the normal stress balance, and the

equation is transformed to:

Bo p−2Ca
1

1 + S2
z

(S2
zwz−2Sz(wr+uz)+ur) =

1√
1 + S2

z

(
1

S
− Szz

1 + S2
z

)
−Ma

S2
on r = S(z, t)

(3.4)

It is important to analyse the meaning of each of the dimensionless numbers that appear in the

equations.

• The Reynolds number, Re = ρ̂V R
µ , the famous ratio between the inertial and viscous forces

in the fluid bulk.

• The Bond number, Bo = ρ̂gR2

σ , the ratio between gravity and surface tension forces.

• The capillary number, Ca = µV
σ , a ratio between inertial and capillary timescales.

• The magnetic Bond number, Ma =
µ0χJ2

0
8π2Rσ

. This is the ratio between the magnetic forces

and surface tension forces.

• The non-dimensional radius α = α̂
R . This parameter is of paramount importance, for it

determines if we are dealing with a thin fluid or not. In particular, when α is close to 1

it means that the wire is thick compared to the fluid, or equivalently, that the fluid film

is thin.
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3.2. Introducing a second lengthscale: the Long-Wave

nondimensionalisation

Motivated with the aim of making analytical progress in nonlinear flows when the waves are

long (38) we modify the scalings to introduce a second lengthscale L associated with the z

coordinate. In particular,

r̂ = Rr ẑ = Lz û =
R

L
V u ŵ = V w t̂ =

L

V
t p̂ = ρ̂gLp (3.5)

We see that this introduces a new non-dimensional number, ϵ = R
L . In the long-wave limit,

we work in the formal limit ϵ → 0. This new scaling will give rise to a different set of non-

dimensional equations. The continuity equation, the no-slip condition and the kinematic equa-

tion are unchanged. However, the Navier-Stokes equations can be verified to transform to:

ϵ4Re(ut + uur + wuz) = −pr + ϵ2(urr + ϵ2uzz +
1

r
ur −

u

r2
)

ϵ2Re(wt + uwr + wwz) = 1− pz + (wrr +
1

r
wr + ϵ2wzz)

(3.6)

The dynamic boundary conditions also change with the introduction of ϵ. The tangential stress

balance transforms to:

(1− ϵ2S2
z )(ϵ

2uz + wr) + 2ϵ2Sz(ur − wz) = 0 on r = S(z, t) (3.7)

and finally the normal stress condition becomes

Bo p−Ca
2ϵ2

1 + ϵ2Sz
(ϵ2S2

zwz −2Sz(wr+ ϵ
2uz)+ur) =

ϵ√
1 + ϵ2S2

z

(
1

S
− ϵ2Szz

1 + ϵ2S2
z

)
− ϵMa

S2
(3.8)

evaluated at r = S(z, t). These scalings lay the groundwork for taking the tempting ϵ → 0

limit, as it is clear this would significantly simplify the equations in question. We will proceed

with this in the following chapter.
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4. Long Wave limit

In the previous chapter, section 3.2 we reached a set of nondimensional equations that take

into account the different lengthscales in the problem, R and L. In this chapter we will explore

what can be deduced when one of those, L is much larger than R. We will do this with the aim

of deducing an evolution equation for S(z, t), the film’s thickness and the position of the free

boundary. Our method is inspired by the one presented by Craster and Matar in (10). We will

go through similar steps as them, but including the new magnetic term in eq. (2.63).

Long wave theories have been hugely successful in aiding to the resolution of viscous flow

problems in the last couple of decades (37; 38; 39). By exploiting disparities between the

lengthscales in a problem equations can be drastically simplified leading to far simpler and less

expensive numerical problems (50), as is the case here.

Looking at the normal stress balance (3.8), we see that fixing Bo = Ca = ϵ, allows us to write

the equation as

p− 2ϵ2

1 + ϵ2Sz
(ϵ2S2

zwz − 2Sz(wr + ϵ2uz) + ur) =
1√

1 + ϵ2S2
z

(
1

S
− ϵ2Szz

1 + ϵ2S2
z

)
− Ma

S2

Forcing this scaling for the nondimensional parameters is equivalent to setting L = σ
ρgR , or in

physical terms, imposing a surface tension dominated setting. Once this is done, we can proceed

by taking the limit ϵ→ 0 of the Navier Stokes equations and the dynamic boundary conditions.
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4.1. Equations in the long wave limit

Taking the aforementioned limit, with the Reynolds number fixed, the continuity equation, no-

slip condition and kinematic equation remain the same, as they do not depend on ϵ. The Navier

Stokes equation simplify greatly, to give

0 = −∂rp

0 = 1− ∂zp+ ∂2rw +
1

r
∂rw

(4.1)

The tangential stress balance (3.7), to leading order is given by a stress free condition, implyign

that the normal derivative of the velocity to be zero at the interface.

∂rw = 0 r = S(z, t) (4.2)

The normal stress balance must be treated very carefully. In particular, the limit is found to be

p =
1

S
− ϵ2Szz −

Ma

S2
on r = S(z, t) (4.3)

This appears inconsistent, as it includes an ϵ2 term. We keep this term as previous literature

does so (for good reason), and in this way we can compare our predictions with the existing

literature. In particular, this term is kept for a purely mathematical reason: without it all

modes would be linearly unstable, an unphysical and undesirable feature for our model, leading

to an ill-posed initial value problem. We can see this in part because it is a singular limit,

meaning removing it removes the dependence from the highest order derivative.

4.2. Solving the long wave equations

4.2.1. Solving for the axial velocity.

We can solve equations (4.1) with standard techniques. The first equation just can be integrated

to give p = p(z). This is useful, as it means we can integrate the second equation in r. We can
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find a homogeneous solution by considering

∂2rw +
1

r
∂rw = 0 (4.4)

which we can identify as a linear first order ordinary differential equation (ODE) in v = ∂rw,

∂rv +
1

r
v = 0 =⇒ dv

v
= −1

r
dr =⇒ log v = − log r + C1 =⇒ v = ∂rw =

C2

r
(4.5)

From here, after another integration we obtain a general solution to the homogeneous problem

w(r) = A log r +B (4.6)

To find a particular solution to the inhomogeneous problem with constant forcing, we see that

the ansatz w(r) = Cr2 is a appropriate, as the second derivative is constant (like the forcing),

the first derivative is linear, and when divided by r again we get a constant. Thus

2C + 2C = ∂zp− 1 =⇒ C =
1

4
(∂zp− 1) (4.7)

to obtain the constants A,B we can make use of the boundary conditions given by no-slip,

w(α) = 0, and the tangential stress (4.2). Using this we find

A

S
+

1

4
(∂zp− 1)2S = 0 =⇒ A = −1

2
(∂zp− 1)S2 (4.8)

and finally, applying no-slip on the wire,

A logα+B +
1

4
(∂zp− 1)α2 = 0 =⇒ B = −A logα− 1

4
(∂zp− 1)α2 (4.9)

Hence our solution is given by

w(r, z) = −1

4
(∂zp− 1)

(
2S2 log

( r
α

)
+ α2 − r2

)
(4.10)
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4.2.2. Solving for for the radial velocity

Using the continuity equation (2.58), we can solve for u(z, t). In particular,

1

r
∂r(ru) + ∂zw = 0 =⇒ u(r, z) = −1

r

∫
dr [r∂zw] (4.11)

The z derivative of w comes from p and S. In particular,

∂zw = −1

4
∂2zp

(
2S2 log

( r
α

)
+ α2 − S2

)
− 1

2
(∂zp− 1)

(
2S log

( r
α

)
− S

)
∂zS (4.12)

and we can perform the integration with the aid of a symbolic calculator. The result is

u(r, z) =
1

r

∫
dr [r∂zw]

= −1

r

∫
r

{
1

4
∂2zp

(
2S2 log

( r
α

)
+ α2 − S2

)
− 1

2
(∂zp− 1)

(
2S log

( r
α

)
− S

)
∂zS

}
dr

= r

(
−1

8
α2∂2zp−

(
1

4
S∂2zp+

1

2
∂zS∂zp−

1

2
∂zS

)
S log

( r
α

))
+

1

4
S2∂2zp+

1

2
S∂zS∂zp−

1

2
S∂zS +A

(4.13)

We can compute the value of the integration constant by imposing the no-slip condition u(α) =

0. This gives

u(r, z, t) =
S

4r
(∂zp− 1)

(
α2 + 2r2 log

( r
α

)
− r2

)
Sz

+
∂2zp

16r

(
2S2

(
α2 + 2r2 log

( r
α

)
− r2

)
+
(
r2 − α2

)2) (4.14)

From here on, we are interested in deriving an evolution equation for S(z, t), so we will be

interested in the value of u and w at r = S, which we list here for convenience

w(S, z) = −1

4
(∂zp− 1)

[
α2 − S2 + 2S2 log

S

α

]
u(S, z) =

(S2(∂zp− 1))z
8S

[
α2 − S2 + 2S2 log

S

α

]
− pzz

16S
(α2 − S2)2

(4.15)

The only remaining boundary conditions are the kinematic equation (2.61) and the normal stress

balance (4.3). We can substitute eq. (4.15) in the kinematic equation: ∂tS + w(S, z)∂zS =
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u(S, z). Multiplying by S and with some algebraic manipulation we can reach the following

conservation-type equation for S2

8(S2)t =
∂

∂z

(
(∂zp− 1)

(
2S2

(
α2 − S2 + 2S2 log

(
S

α

))
− (α2 − S2)2

))
p =

1

S
− ϵ2Szz −

Ma

S2

(4.16)

This is a partial differential equation that completely determines the spatiotemporal evolution

of S(z, t). Once S is found using the numerical schemes outlined in chapter 11, the leading

order velocity fields follows from eq. (4.14) and eq. (4.10), repeated here for convenience

u(r, z, t) =
S

4r
(∂zp− 1)

(
α2 + 2r2 log

( r
α

)
− r2

)
Sz

+
∂2zp

16r

(
2S2

(
α2 + 2r2 log

( r
α

)
− r2

)
+
(
r2 − α2

)2)
w(r, z) = −1

4
(∂zp− 1)

(
2S2 log

( r
α

)
+ α2 − r2

) (4.17)

Further, to plot the streamlines it might be interesting to obtain an analytical formula for the

streamfunction, in particular the Stokes streamfunction as introduced in section 7.4. The details

of the calculation are omitted as they are simple but tedious integrations, but are available in

appendix A.6. The final result is

ψ(r, t) =
(∂zp− 1)

16

(
2S2

(
α2 + 2r2 log

( r
α

)
− r2

)
−
(
r2 − α2

)2)
(4.18)

4.3. The thin film limit

Equation (4.16) is a good equation to consider when studying the linear stability of the problem,

or to simulate using numerical methods. However, it is highly nonlinear and fairly intractable

in that form. A natural simplification to make is to consider the limit as the film’s thickness is

small. Mathematically, setting S = α+ η, with η small (physically this is a thin film limit, i.e.

the surface is close to α) we get (detailed calculation in appendix A.4)

(1 +
η

α
)ηt +

1

3

∂

∂z

[
η3
((

1 +
η

α

)
(1 +

ηz
α2(1 + η

α)
2
(1− 2Ma

α(1 + η
α)

) + ϵ2ηzzz

)]
= 0 (4.19)
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Finally, taking the limit η/α << 1, we reach a Benney type (18) equation

∂tη +
1

3

∂

∂z
(η3(1 + (1− 2Ma)ηz + ϵ2ηzzz) = 0 (4.20)

Although this equation is structurally very similar to others in the literature as in (10; 28; 38),

the presence of the magnetic bond number as a parameter enables the stabilisation of all modes,

as will be shown in the preceding pages. This is a significant difference not present in non-

ferrohydrodynamic models.

4.4. Linear Dispersion Relations

4.4.1. Dispersion relation associated with arbitrary thickness

In this section we will derive the linear dispersion relation associated with eq. (4.16). The

system is linearised with respect to a steady state where the pressure is constant p = 1, and

the film is perfectly cylindrical, S = 1. This greatly simplifies the expressions for u and w from

(4.15). In particular,

u(S, z)∗ = 0 w(S, z)∗ =
1

4

[
α2 − 1 + 2 log

(
1

α

)]
(4.21)

and we introduce a normal mode

S = 1 + δS̃ exp(λt+ ikz) = 1 + δS̃ϕ(t, z) (4.22)

When we substitute in eq. (4.16) and we linearise the equations (discarding terms which are

not linear in δ), we get the following (detailed calculation in appendix A.5)

λ(k) =
k2

16

(
ϵ2k2 + 2Ma− 1

)
((α2 − 1)2 + 2(2 logα+ 1− α2))− ik

2
(2 logα+ 1− α2) (4.23)
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To study this dispersion relation, and the stability properties of the system it is important to

understand the real part of this equation. In particular, focusing on

f(α) = (α2 − 1)2 + 2(2 logα+ 1− α2), α ∈ (0, 1] (4.24)

as f(α = 1) = 0 and f(α) → −∞ as α → 0, and this is an increasing function, we see that

f(α) ≤ 0 when α ∈ (0, 1]. We can confirm this by plotting the function f(α), available in

fig. 4.1. This facilitates the stability analysis, as when focusing on the real part, we see the

0.0 0.2 0.4 0.6 0.8 1.0
25

20

15

10

5

0
f( ) = ( 2 1)2 + 2(2log( ) + 1 2)

Figure 4.1.: The function f(α). We observe indeed it is negative in the domain α ∈ [0, 1]

system is unstable when

k2(ϵ2k2 + 2Ma− 1) < 0 ⇐⇒ ϵ2k2 + 2Ma− 1 < 0 (4.25)

Here, we see directly that 2Ma > 1 implies linear stability for all modes, as then the above

quantity is always positive. Thus there is a critical value of the Magnetic number atMacrit =
1
2 .

Further, we see that when this is not the case, and the system configuration allows unstable

modes, they are located in the interval
(
0, 1−2Ma

ϵ

)
. Furthermore, taking a derivative of the

real part of the dispersion relation (4.23) with respect to the wave number k, we find that the

most unstable mode is given by

∂kλ(k
∗) = 0 =⇒ k∗ =

√
1/2−Ma

ϵ
(4.26)
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Figure 4.2.: Neutral Curve for the long wave limit.

substituting this in the dispersion relation we find that the maximum growth rate is given by

λ∗ = Re(λ(k∗)) = −f(α)
16ϵ2

(
Ma− 1

2

)2

(4.27)

4.4.2. Thin film limit

When the film is thin, α is close to one. Thus, let ∆ = 1 − α > 0, and ∆ << 1. Solving for

α = 1−∆, and substituting in (4.23), focusing on the real part only and taking the limit as ∆

is small, we obtain the dispersion relation for the thin film limit

λ =
k2

16

(
ϵ2k2 + 2Ma− 1

)
(∆)3 =

k2

16

(
ϵ2k2 + 2Ma− 1

)
(1− α)3 +O((1− α)4) (4.28)

We can also recover this limit from the thin-film equation 4.20. The most interesting fact about

this relation is that it tells us that the critical Magnetic number is the same as for the thick film

case. In particular, the ”shape” of the dispersion relation is the same, with the only difference

being the magnitude. Moreover, both dispersion relations will share the same neutral curve.

As for the imaginary part of the dispersion relation, we find that λi = k(1− α)2 +O((1− α)3)

We compare the thin film limit with the standard dispersion relation in fig. 4.3. In particular,

it is interesting to note how it is appreciable that the cubic error in section 4.4.2 is larger than

the qubic error in eq. (4.28).



31

0.00 0.25 0.50 0.75 1.00
Normalised wavenumber, k

0

5

10

15
Gr

ow
th

 ra
te

, 
=

r
+

i
i

=0.1,  Ma = 0

0.00 0.25 0.50 0.75 1.00
Normalised wavenumber, k

20

10

0

10

Gr
ow

th
 ra

te
, 

=
r
+

i
i

=0.1,  Ma = 0.25

0.00 0.25 0.50 0.75 1.00
Normalised wavenumber, k

40

30

20

10

0

10

20

Gr
ow

th
 ra

te
, 

=
r
+

i
i

=0.1,  Ma = 0.5

Real
Imag
Real
Imag

Figure 4.3.: Dispersion relation for a thick film, α = 0.1. The solid lines represent the dispersion
relation for arbitrary thickness (eq. (4.23)) and the dashed lines the dispersion
relation in the thin film limit (eq. (4.28)). Black lines represent the growth rate -
the real part of the dispersion relations - and blue lines the wave speed, i.e. the
imaginary part of the dispersion relations. As the film is thick the dashed and solid
lines are far apart. The stabilising effect of increasing the magnetic bond number
and the stability threshold of Ma = 0.5 is confirmed.
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Figure 4.4.: Dispersion relation for a medium thickness film, α = 0.5. The legend is the same
as in fig. 4.3. We observe the magnetic bond number still has a stabilising effect
and the stability threshold is Ma = 0.5.
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Figure 4.5.: Dispersion relation for a thin film, α = 0.9. The legend is the same as in fig. 4.3. We
appreciate how close the real part (growth rate) curves due to the qubic convergence.
The imaginary curves however, are not as close, owing to the quadratic convergence,
but overall the solid and dashed lines are very close to each other, and the same
stabilising pattern as in the other figures is visible.
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5. The long wave limit for a time dependent

magnetic field.

A natural extension to chapter 4 is to consider the effect of a time dependent current, I(t). Many

electrical circuits in every day applications run on alternating current (AC), so this question is

relevant. In particular we will consider the effect of oscillating time dependent currents of the

form

I(t) = I0(1 + β cos(Ωt))

With this form, we have an average current I0 that is being disturbed sinusoidally. It is im-

portant to remark that we will not consider the effects of the electric field in this section as

computed in section 2.1.5, assuming it negligible. In particular, this can be done by assuming

Ω is small enough, as the electric field is proportional to the magnitude of Ω. Recalling that

Ma = µI2, where µ is a constant, we will now have to consider Ma = Ma(t).

5.1. Linear stability analysis

Proceeding as before, with the same base flow and spatially constant leading order pressure, we

perform a similar linearity analysis as before, but we now consider normal modes of the form

S = 1 + δS(t)eikz

where the growth rate is now a function of time S(t). Performing a similar linearisation calcu-

lation as before in equation (4.16), the right hand side will be the same, for the derivatives are

only spatial. However on the left hand side S′(t) will appear. In particular the new ”dispersion
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relation” will now be a temporal ordinary differential equation for S(t) (this is the real part

only):

dS

dt
=
k2

16
(ϵ2k2 − (1− 2Ma(t))f(α)S(t) (5.1)

where f(α) = (α2−1)2+2(2 logα+1−α2) < 0 as in the previous chapter. Considering the form

of the time dependent magnetic number, squaring the intensity and expanding into resonant

modes (so only terms of the form cos(nΩt) n ∈ Z), we obtain

dS

dt
=
k2

16

(
ϵ2k2 − (1− 2Ma0−Ma0 β

2) + 4Ma0 β cos(Ωt) +Ma0 β
2 cos(2Ωt)

)
f(α)S(t) (5.2)

where we have written Ma0 = µI20 . This equation can be written as

dS

dt
= (A+B cos(Ωt) + C cos(2Ωt))S (5.3)

where A,B and C are obtained from eq. (5.2) in the straightforward way, by equation coef-

ficients. As a remark, the reader might find eq. (5.3) familiar as it reminds us of Mathieu

equations. However it is not a Mathieu equation, as it is first order equation. If we write

S(t) = exp(λ(t)), it can be integrated to give

λ(t) = ln(S(t)) = At+
B

Ω
sin(Ωt) +

C

2Ω
sin(2Ωt)

In particular, we observe the sign of A will control the long time stability of the system, as the

sinusoidal terms will modulate the amplitude but will never become unbounded. For stability

A < 0 is required, and proceeding as in the previous chapter, considering f(α) < 0, the stability

criterion is equivalent to

ϵ2k2 − (1− 2Ma0−β2Ma0) < 0

Thus we find the new critical value of the average magnetic bond number is

Ma∗0 =
1

2 + β2
<

1

2
(5.4)
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which is smaller than the non-time dependent critical value! Thus, the oscillatory electric

current has a further stabilising effect on the system, as all modes become stable to linear

perturbations at a smaller critical value! A comparison is presented in fig. 5.1.
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Figure 5.1.: Comparison of the critical value for the parameter Ma in the oscillatory and constant
case.

In fig. 5.2 the curve S(t) is displayed for a set of representative values of the parameters. The

decay is often interrupted by the oscillations, but in the long term the system ends up decaying.
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Figure 5.2.: Plot of the amplitude S(t) = exp(λ(t)) for some representative values.



35

6. Simulation of the long wave reduced

order equations and travelling wave

formation

In the previous chapters several reduced order partial differential equations were derived to

model the fluid thickness. Although these equations are interesting from a physical perspective,

they are perhaps even richer from a purely mathematical perspective. In particular, these

equations develop travelling waves with impressive properties from seemingly arbitrary initial

conditions. In this chapter we briefly present our findings for the formation of travelling waves.

Moreover, we are interested in considering how well the thin film equation approximated the

more complicates conservation equation in eq. (4.16).

6.1. Accuracy of the thin film approximation

The partial differential equations obtained in the long-wave limit (eq. (4.16) and eq. (4.20)) were

simulated using a pseudospectral method, as detailed in section 11.1 with periodic boundary

conditions for z ∈ [−L,L] and N = 256 or N = 512 modes. In particular, we are inter-

ested in seeing how well the thin film equation eq. (4.20) approximates the more complicated

equation eq. (4.16) for arbitrary thickness.

Starting from equation eq. (4.20), we initialize the system with an initial condition

S(z, 0) = 1 + δ cos(k∗z) (6.1)
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where k∗ is the wave number that selects the fastest growing mode according to linear theory,

as derived in eq. (4.28).

The equations were solved for thin films with α = 0.99 and α = 0.95 as well as for thicker films

with α = 0.75. Although, eq. (4.20) is independent of α the parameter must enter through the

initial conditions, as S = η + α and S is centered around 1. Moreover, they were simulated

for unstable regimes, Ma = 0 as well as at the stability threshold Ma= 1
2 . As for the other

parameters, ϵ = 0.1 and δ = 1−α
2 . This is presented in fig. 6.1 through fig. 6.6. Time is in the

vertical axis and space is in the horizontal axis in the contour plots. The final panel showcases

the final profile for each of the two equations superimposed, with the dashed lined representing

the thin film equation eq. (4.20) and the solid line the arbitrary thickness equations eq. (4.16).
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Figure 6.1.: Simulation of a thick film outside of the stability threshold. The final panel show-
cases the final profiles for each of the two equations.
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Figure 6.2.: Simulation of a thick film at the stability threshold. There is rapid convergence.

In fig. 6.1 and fig. 6.2 the equations are simulated for a relatively thick film, and thus the error

in the thin film approximation is considerable, as expected.
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Figure 6.3.: Simulation of thin film.
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Figure 6.4.: Simulation of a thin film at the stability threshold.

In fig. 6.3 and fig. 6.4 are simulated for a thinner film, and thus the error decreases significantly,

as expected from the thin film analysis.
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Figure 6.5.: Simulation of a very thin film.
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Figure 6.6.: Simulation of a very thin film at the stability threshold. The simulation time
was extended to T = 500 to account for the fact that the growth rate goes like
O((1− α)3)

In fig. 6.5 and fig. 6.6 the equations are simulated for an extremely thin film and thus error

is very small. Note that the decay rate is very small, but this is expected from the dispersion

relations in chapter 4, as the absolute size of the growth rate (whether positive or negative) is

proportional to the function f(α) that converges to 0 as α → 1, and it does so with a small

quadratic error.

6.2. Travelling wave formation

Once we have compared eq. (4.16) to eq. (4.20) we can seek solutions with interesting mathemat-

ical properties. In the thin film limit, for a certain parameter range, the equation is initialised

with a linearly unstable wavenumber with the aim of seeking travelling wave solutions. In

particular, the following parameter values are used:

• ϵ = 0.1, a small value but large enough so that the fourth derivative term is large enough

that the numerics are not unstable.

• D = 1− 2Ma = 0.6, or equivalently Ma = 0.2. This means we have a weak current that

is not strong enough to stabilise the free surface, but the ferrohydrynamic effect is not

negligible.

• The interval length L is varied.

• The thickness parameter α is varied, between α = 0.4 and α = 0.6
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• The initial conditions are similar to those in the previous section, with

η(z, 0) = (1− α)(1 + 0.95 sin(k∗z))

where as previously mentioned k∗ is the most unstable wavenumber according to the linear

theory developed in chapter 4.

First, we study a film of medium thickness, α = 1
2
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Figure 6.7.: The travelling wave solution remains unaltered in time.
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Figure 6.8.: The travelling wave solution remains unaltered in time.

In fig. 6.7 and fig. 6.8 we observe that a travelling wave forms. Moreover, as L increases the

travelling wave forms more quickly and it is more peaked. This is because there is more mass

available for the travelling wave to accumulate. When α is increased the rate of formation

decreases, as this means the film is thinner and thus less mass is available for the mechanism.

We can observe this in fig. 6.9 and fig. 6.10. In particular, in fig. 6.9 the wave has not formed

yet and two clear waves are present after t = 200 time units of iteration. For L = 4π however
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the added mass induced by the increased interval allows the wave to form faster.
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Figure 6.9.: The travelling wave solution remains unaltered in time.
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Figure 6.10.: The travelling wave solution remains unaltered in time.

Finally, decreasing α (increasing the fluid thickness) increases the rate of convergence, as seen

in the very detailed simulation for α = 0.4 displayed in fig. 6.11

Figure 6.11.: The travelling wave solution remains unaltered in time.

Moreover we can suspect this solution is stable as if it is supplied as an initial condition it

simply remains unchanged, as evident in fig. 6.12
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Figure 6.12.: The travelling wave solution remains unaltered in time.

Further, if we perturb the travelling wave, so that the initial condition is the travelling wave

with some sinusoidal noise it is still stable, at least from a numerical perspective, as seen in

fig. 6.13. Proving the stability of the solution more generally is complicated as it has a rich

structure and the linearised perturbation equations have non constant coefficients.

Figure 6.13.: The travelling wave solution is stable to perturbations of the form cos(kz).

As a final remark, it is interesting to note that the travelling wave is not a symmetric profile.

This is expected, as if eq. (4.20) is transformed into a travelling frame, with ξ = x − ct, the

equation obtained is

−c∂ξη +
1

3

∂

∂ξ

(
η3
(
1 + (1− 2Ma)∂ξη + ϵ2∂3ξη

))
= 0 (6.2)

And this equation does not admit symmetric solutions.
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6.2.1. Time periodic travelling waves

Following the spirit of chapter 5, a natural question to ask is what effect will a time dependent

current I(t) = 1 + δ cos(Ωt) on the travelling waves obtained in the previous section. This

experiment was run for α = 0.4, 0.5, Ω ∈ {0.1, 0.5, 1, 2} and δ ∈ {0.1, 0.5, 0.7}, but a limited

number of examples are shown in fig. 6.14, fig. 6.15 and fig. 6.16. The travelling wave still forms

but it now has a temporal structure. In particular, the wave’s amplitude oscillates periodically

in phase with the time dependent current.
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Figure 6.14.: Time periodic travelling wave, with Ω = 1 (fast oscillation) and δ = 0.1 (small
forcing). The wave maximum barely deviates from the deterministic case.
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Figure 6.15.: Time periodic travelling wave, with Ω = .1 (slow oscillation) and δ = 0.1 (small
forcing). The wave maximum oscillates on a much larger timescale.
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Figure 6.16.: Time periodic travelling wave, with Ω = 0.5 (fast oscillation) and δ = 0.5 (large
forcing). The wave maximum heavily deviates from the deterministic case.
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7. The Stokes stream function and

derivation of the linearised equations

In this short chapter we will linearise the Navier-Stokes equations for arbitrary Reynolds num-

ber, alongside the linearised boundary conditions. The base flow is chosen specifically to counter

gravity at leading order. The derivations presented here will be useful to consider in the up-

coming chapters. Further, another useful concept is presented here: the Stokes stream function.

Starting from the Navier-Stokes equations and the corresponding boundary conditions nondi-

mensionalised in the natural way (with a single spatial lengthscale), as in section 3.1, we can

perform the following expansion: To obtain the dispersion relation, we perform an expansion

around the perfectly cylindrical solution with (unknown) uniform pressure.

S = 1 + ϵS1(z, t) andp = p0 + ϵp1(r, z, t) (7.1)

For the velocities, we will need some non-zero leading order component in the z direction to

counteract gravity (as ∇p0 = 0), but we can restrict this to w0 = w0(r) only, so that

w = w0(r) + ϵw1(r, z, t) u = ϵu1(r, z, t)

It is important to remark that this ϵ term is different to the one in previous chapters and has

no direct physical interpretation.
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7.1. Deriving the leading order equations

7.1.1. Body equations

The continuity equation is trivially satisfied at O(1), as w0 is a function of r only and u0 is

identically 0. Likewise the leading order radial momentum equation is also trivially satisfied,

as it only involves u0 = 0 and derivatives of p0, which are identically zero as the pressure is

assumed constant. However, the leading order z momentum equation is not trivial:

Re(wt + uwr + wwz) = 1− pz + wrr +
1

r
wr + wzz

at O(1), we retain the following terms:

1 +
1

r
∂r(r∂rw0(r)) = 0

and the system is subject to the following leading order boundary conditions. The tangential

stress balance at leading order (recall S = 1 + ϵS1)

∂rw0 = 0 r = 1

No slip becomes w0(r = α) = 0. The solution to this boundary value problem is known to us

from the previous discussion

w0(r) =
1

4

[
2 log

( r
α

)
− (r2 − α2)

]

Finally, the normal stress balance at leading order is

Bo p0 +Ma− 1 = 0 =⇒ p0 =
1

Bo
− Ma

Bo
(7.2)

7.2. Deriving the perturbation equations

We can now consider the O(ϵ) equations. It is easy to see the continuity equation translates

readily to the perturbed variables
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∂

∂r
u1(r, z, t) +

∂

∂z
w1(r, z, t) +

u1(r, z, t)

r
= 0 (7.3)

Considering Navier Stokes in the radial direction, terms where u is multiplied with u will be

neglected at this order. The terms in the Laplace operator will be retained due to its linearity,

as well as term in the ∂t operator. Further,

w∂zu = (w0(r) + ϵw1)(ϵu1) = ϵw0(r)u1 +O(ϵ2)

hence we keep only the order ϵ term. Thus, the linearised equation is

Re(∂tu1 + w0(r)∂zu1) = −∂rp1 +
∂2u1
∂r2

+ ∂2zu1 +
1

r
∂ru1 −

u1
r2

(7.4)

Let us now consider the momentum equation in the axial direction. As before, the terms acted

upon by linear operators will show up as normal. There two nonlinear terms to consider here:

u∂rw = ϵu1∂r(w0(r) + ϵw1) = ϵu1∂rw0 +O(ϵ2)

w∂zw = (w0 + ϵw1)(ϵ∂zw1) = ϵw0∂zw1

where we have used the fact ∂zw0(r) = 0. Thus, the linearised equation is:

Re(∂tw1 + w0(r)∂zw1 + u1
dw0

dr
) = −∂zp1 + ∂2rw1 +

1

r
∂rw1 + ∂2zw1 (7.5)

7.2.1. Boundary conditions

The no-slip condition is trivially evaluated at order ϵ: u1(α) = w1(α) = 0 Moving on to the

free boundary conditions, the simplest is the kinematic condition. The linear terms are simply

evaluated at order ϵ, but the nonlinear term:

w∂zS = (w0(1) + ϵw1(1))∂z(1 + ϵS1) = ϵw0(1)∂zS1 +O(ϵ)
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thus, the condition is

∂tS1 + w0(r = 1)∂zS1 = u1(r = 1) on r = S(z, t) (7.6)

Moving on to the tangential stress balance, we must proceed with care. Copying the condition

here for convenience,

(1− S2
z )(uz + wr) + 2Sz(ur − wz) = 0 on r = 1

We can immediately see that second term is O(ϵ2) and will not contribute at the desired order.

On the first term, S2
z = O(ϵ2) so again it is not important. Thus we have

∂zu+ ∂rw = 0 r = 1 + ϵS1

Considering ∂zu = ϵ∂zu1 + . . . , this term will be present. As for ∂rw, we can expand this

∂rw|r=1+ϵS1=
dw0

dr
(1+ϵS1)+ϵ∂rw1(1) =

dw0

dr
(1)+ϵ

d2w0

dr2
|1S1+ϵ∂rw1(1) = ϵ

d2w0

dr2
|1S1+ϵ∂rw1(1)

Now, evaluating d2w0
dr2

= −1 and rearranging, we reach the tangential stress balance at order ϵ.

S1 = ∂zu1 + ∂rw1 on r = 1 (7.7)

Finally, the normal stress balance can be linearised to

Bo p1 − 2Ca ∂ru1 = (2Ma− 1)S1 − ∂2zS1 on r = 1 (7.8)
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7.3. Summary

Below we list the linearised perturbation equations for convenience

∂

∂r
u1(r, z, t) +

∂

∂z
w1(r, z, t) +

u1(r, z, t)

r
= 0

Re(∂tu1 + w0(r)∂zu1) = −∂rp1 +
∂2u1
∂r2

+ ∂2zu1 +
1

r
∂ru1 −

u1
r2

Re

(
∂tw1 + w0(r)∂zw1 + u1

dw0

dr

)
= −∂zp1 + ∂2rw1 +

1

r
∂rw1 + ∂2zw1

u1(α) = w1(α) = 0

∂tS1 + w0(r)∂zS1 = u1 on r = 1

S1 = ∂zu1 + ∂rw1 on r = 1

Bo p1 − 2Ca∂ru1 = (2Ma− 1)S1 − ∂2zS1 on r = 1

(7.9)

With this, we have the required equations to proceed with the stability analysis for the upcoming

chapters, but we will have a brief detour to discuss a useful construction for numerical schemes.

7.4. The Stokes stream function

Another useful construction is finding a stream-function for the flow. Although the flow is three

dimensional in the sense that it occupies a three dimensional region of space, the axisymmetric

assumption implies that all dependent variables depend on at most two spatial variables and thus

the flow is two dimensional mathematically speaking. Therefore, we know that a stream-function

will exist (29). In particular, we introduce a Stokes stream-function that will automatically

satisfy the continuity equation in cylindrical coordinates(51):

u =
1

r

∂ψ

∂z
w = −1

r

∂ψ

∂r

It is easy to see that ψ will automatically satisfy the continuity equation (7.3), as it can be

rewritten as

1

r
∂r(ru) + ∂zw = 0

and using the fact that ∂2rz = ∂2zr the proof is trivial.
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This construction will be helpful for our task, for when it is substituted into the Navier-Stokes

equations the pressure can be eliminated and we are left with a single scalar equation for a

single scalar unknown, ψ(r, z, t). It must be noted however that this equation will be a fourth

order partial differential equation, and thus will require four boundary conditions to specify the

solution.

7.5. Linearised equations in terms of the Stokes Stream

Function

We will now make use of the Stokes stream-function to derive equivalent equations to those in

section 7.3. First, note that the continuity equation will be satisfied automatically, so it can be

safely ignored. Before proceeding, and with the foresight that we will be eventually interested in

understanding the stability of this system, we introduce the following normal mode formulation

(with a slight abuse of notation for convenience)

ψ(r, z, t) −→ ψ(r, t)eiκz =⇒ ∂z → iκ

Now, we can substitute this form of the stream function into the linearised Navier-Stokes equa-

tions from eq. (7.9). The pressure is eliminated by multiplying the r equation by iκ (which is

the same as ∂z)) and subtracting the z equation after differentiation by r. This will cancel the

pressures and will return the following scalar equation for ψ(r, t)

(
∂4

∂r4
ψ(r, t)

)
r3 − 2

(
∂3

∂r3
ψ(r, t)

)
r2 −

(
∂3

∂r2∂t
ψ(r, t)

)
Re r3

+
(
−iW0(r)Re k r

3 − 2k2r3 + 3r
)( ∂2

∂r2
ψ(r, t)

)
+

(
∂2

∂r∂t
ψ(r, t)

)
Re r2 + iψ(r, t)

(
d2

dr2
W0(r)

)
Re k r3

+
(
iRe k r2W0(r) + 2k2r2 − 3

)( ∂

∂r
ψ(r, t)

)
+

(
Re kr

(
∂

∂t
ψ(r, t)

)
+

(
−iRe

(
dW0

dr
(r)

)
+ (iReW0(r) + k) k2r

)
ψ(r, t)

)
k r2 = 0

(7.10)
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The no slip boundary conditions at r = α < 1 transform to

ψ(α, t) = 0 and
∂ψ

∂r
|r=α = 0

As for the free boundary conditions at r = 1, combining the tangential and kinematic equations

we obtain:

∂2

∂r∂t
ψ(r, t)− ∂3

∂r2∂t
ψ(r, t)− k2

(
∂

∂t
ψ(r, t)

)
+ ikW0(1)

(
∂

∂r
ψ(r, t)− ∂2

∂r2
ψ(r, t)− k2ψ(r, t)

)
− ikψ(r, t) = 0

(7.11)

and combining the tangential and normal stress balance, substituting for the pressure in terms

of ψ from the Navier-Stokes equations, yield the final boundary condition, to be evaluated at

r = 1.

− iBo

k

(
i

(
∂

∂r
ψ(r, t)

)
W0(1)Re k − iψ(r, t)

(
dW0

dr
(r)

)
Rk + k2

(
∂

∂r
ψ(r, t)

)
+

(
∂2

∂r∂t
ψ(r, t)

)
Re

)
− iBo

k

(
−
(
∂3

∂r3
ψ(r, t)

)
+

(
∂2

∂r2
ψ(r, t)

)
− ∂

∂r
ψ(r, t)

)
− 2Ca

(
−ikψ(r, t) + ik

(
∂

∂r
ψ(r, t)

))
+
(
k2 −D

)( ∂

∂r
ψ(r, t)− ∂2

∂r2
ψ(r, t)− k2ψ(r, t)

)
= 0

(7.12)

Detailed derivations of these boundary conditions are included in appendix A.7
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8. Linear Stokes Flow Analysis

In this section the Stokes limit of the problem is considered. In this case, the Reynolds number

is still vanishingly small, however, unlike in the long wave limit there does not exist a disparity

between the scales so a limit can not be taken as before. Hence, the full Stokes equations are

considered.

The aim of this chapter is to derive a dispersion relation for the Stokes problem, to compare

it and validate the analytical dispersion relations for the reduced model. The approach is

motivated by the approach present by (10), but incorporating the Magnetic effect.

We can continue from the previous chapter, by setting Re = 0 in the perturbation equations.

We recall for convenience that the base flow is given by the balance between viscous forces and

gravity, and the associated constant pressure is

w0(r) =
1

4

[
2 log

( r
α

)
− (r2 − α2)

]
p0 =

1−Ma

Bo
(8.1)

8.1. Linearised Stokes equations

As the Reynolds number is not present in the continuity equation we have again

∂ru1 +
u1
r

+ ∂zw1 = 0
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And the momentum balance equations are eq. (7.9) but with Re = 0

0 = −∂rp1 + ∂2ru1 + ∂2zu1 +
1

r
∂ru1 −

u1
r2

0 = −∂zp1 + ∂2rw1 + ∂2zw1 +
1

r
∂rw1

(8.2)

8.1.1. Linearised Boundary conditions

As Re is not present in the linearised boundary conditions (7.9), they will be exactly the same.

They are repeated here for convenience. No-slip at the wire surface is given by u1(r = α) =

w1(r = α) = 0, and at the free boundary (in this case evaluated at r = 1), the kinematic

condition, tangential stress and normal stress condition are respectively:

∂tS1 + w0(r = 1)∂zS1 = u1(r = 1)

−S1 +
∂u1
∂z

+
∂w1

∂r
= 0

Bo p1 − 2Ca∂ru1 − 2MaS1 + S1 + ∂2zS1 = 0

(8.3)

8.2. Stokes operator

As discussed in section 7.4, there exists a stream function for this axisymmetrical flow, recalled

here for convenience.

u1 =
1

r

∂ψ

∂z
w1 = −1

r

∂ψ

∂r

The partial differential equation in section 7.5 reduces to (after a logn and not very insightful

calculation)

D(Dψ) = 0 D =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
(8.4)

where D is known as the Stokes operator (8).

8.3. Normal mode formulation

With the aim of seeking a linear dispersion relation to study the instability of the Stokes problem,

a normal mode configuration is introduced, following the idea already introduced in chapter 4
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and section 7.5. This is equivalent to transforming the problem to Laplace space in t and to

Fourier space in z. However the radial coordinate is not transformed (and more generally, the

equations for arbitrary Reynolds number have coefficients that depend on r). When introducing

the normal modes, it can either be done at the stream function level or at the velocity level,

but it does not matter for the equations are equivalent. In particular,

ψ(r, z, t) = f(r)eiκz+Λt + c.c. or

u1(r, z, t) = ũ(r)eiκz+Λt + c.c. w1(r, z, t) = w̃(r)eiκz+Λt + c.c.

(8.5)

This means that the functions f, ũ and w̃ are related via

ũ(r) =
iκ

r
f(r) w̃(r) = −1

r

∂f(r)

∂r
(8.6)

and similarly for the pressure field and the free surface: p(r, z, t) = p̃(r)eiκz+Λt + c.c. and

S(z, t) = S̃eiκz+Λt + c.c., where S̃ is a constant (and not a function of r like all the other

tilde variables). In this formulation, the governing equations will take the form of ordinary

differential equations in r for the tilde variables. We must remark, that to connect the long

wave formulation with the Stokes analysis we identify, κ = ϵk and Λ = ϵλ, where k, λ are

the perturbation variables from the long wave analysis in chapter 4. Further, the dispersion

relation (Λ(κ)) will be found by forcing a solvability condition with the boundary conditions. In

the stream function formulation the continuity condition is trivially satisfied. The momentum

equations under this normal mode formulation are given by

0 = −∂rp̃+ ∂2r ũ− κ2ũ+
1

r
∂rũ− ũ

r2

0 = −iκp̃+ ∂2r w̃ − κ2w̃ +
1

r
∂rw̃

(8.7)

Analytical Solution to the Ordinary Differential equations

To solve analytically the ordinary differential equations we could take two possible paths. First,

using the factorised form of the equation for the stream function (8.4), or by exploiting the

fact that the pressure field will be harmonic in the Stokes limit. We will present the second

option here, but once the general solution has been found we will return to the stream function
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formulation using the connection presented in (8.6) to impose the boundary conditions.

Taking the divergence (meaning applying the operator 1
r∂r(r·) to the radial equation and multi-

plying the longitudinal equation by iκ↔ ∂z and summing up the result) and using the continuity

equation we deduce the following equation for the pressure:

∂2r p̃+
1

r
∂rp̃− κ2p̃ = ∇2p̃ = 0 (8.8)

in other words, the pressure is harmonic. From the left hand side of equation 8.8 we identify a

Bessel equation (multiplying by r2). Thus the general solution is given by (1)

p̃ = a1I0(κr) + a3K0(κr) (8.9)

where I0 and K0 are modified Bessel functions of order 0 of the first and second kind, re-

spectively, and a1, a3 are unknown constants. With the solution for p̃(r) we can return to the

momentum equations and solve for say w̃ (or ũ, we only need one to compute the stream func-

tion) The equation for w̃ is the longitudinal momentum equation, repeated here for convenience

0 = −iκp̃+ ∂2r w̃ − κ2w̃ +
1

r
∂rw̃

Multiplying by r2 and substituting the now known pressure

0 = −iκr2(a1I0(κr) + a3K0(κr)) + r2∂2r w̃ − r2κ2w̃ + r∂rw̃

we recognise an inhomogeneous Bessel equation. The homogeneous solution will be given by

w̃h(r) = ia2I0(κr) + ia4K0(r)

The arbitrary constants are rescaled by i for convenience. Now a particular solution must be

found. Trying an Ansatz

w̃p(r) = C1rI1(κr) + C2rK1(r)

we find that the constants must be equal to C1 = ia1
2 C2 = − ia3

2 . This gives the solution for
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w̃(r)

w̃(r) = i

(
a1rI1 (κr)

2
+ a2I0 (κr)−

a3rK1 (κr)

2
+ a4K0 (κr)

)
(8.10)

now, recalling the relationship between w̃ and f(r), the radial dependence of the stream function

given in equation 8.6, we have

w̃(r) = −1

r

∂f

∂r
=⇒ ∂f

∂r
= −rw̃(r)

and integrating, the stream function is found

f(r) =
i

2κ2
(2a1I1(κr)− 2a3K1(κr)− κa1rI0(κr)− 2κa2I1(κr)− κra3K0(κr) + 2κa4K1(κr))

(8.11)

This integral has been computed with the aide of the formulas presented in (1). With the general

solution in hand, we can impose the solvability condition by ensuring there are a non-zero set

of constants that satisfies the boundary conditions.

8.3.1. Matrix Reformulation

Now that an analytical solution to the ordinary differential equations has been obtained, the

dispersion relation is obtained by setting up the boundary conditions for an arbitrary values

of κ and imposing a solvability condition. It is easier to see this by reformulating the problem

with a matrix. This is motivated by the fact that in equation 8.11 the stream function is linear

in the integration constants {ai}i∈{1,2,3,4}, so that the stream function can be written as

f(r) = v(r) · a p̃(r) = q(r) · a (8.12)

where

v(r) =



ir
κ2 I1(κr)− ir2I0(κr)

2κ

− irI1(κr)
2κ2

− irK1(κr)
κ2 − ir2K0(κr)

2κ

irK0(κr)
κ


q(r) =



I0(κr)

0

K0(κr)

0


a =



a1

a2

a3

a4


To set up the solvability condition it is necessary to rewrite the boundary conditions from 8.1.1
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in terms of the stream function f(r). This has been done already in section 7.5, but we do not

need to find an expression for the pressure as we already have one in terms of Bessel functions.

We know from section 7.5 that the no-slip conditions at the wire will require that

ũ(α) =
κi

α
f(α) = 0 =⇒ f(α) = 0

w̃(α) = − 1

α

df

dr
(α) = 0 =⇒ f ′(α) = 0

(8.13)

Moving onto the free boundary, where we evaluate the functions and their derivatives at r = 1

(recall this is the first order perturbation). The tangential stress balance is

∂rw1 + ∂zu1 = S1 =⇒ −∂r(
1

r

df

dr
) + iκ

iκ

r
f(r) = S̃

1

r2
f ′(r)− 1

r
f ′′(r)− κ2f(r) = S̃

thus, the boundary condition (r = 1) becomes

S̃ = f ′(1)− f ′′(1)− κ2f(1) (8.14)

For the normal stress balance, we define D = 1− 2Ma and compute

Bo p1 − 2Ca∂ru1 = −(DS1 − ∂2zS1)Bo p̃− 2Ca∂r

(
iκ

r
f

)
= −(D − κ2)S̃ (8.15)

We can find the value of the pressure from the radial z momentum equation, and evaluate at

r = 1

Bo p̃(1) + 2iκCa(f(1)− f ′(1)) + (D − κ2)S̃ (8.16)

Finally, the kinematic condition is

∂tS1 + w0(1)∂zS1 = u1(1)

=⇒ ΛS̃ + w0(1)iκS̃ = ũ(1) = iκf(1)

(8.17)

We can reduce this system from 5 equations and 5 unknowns (ai’s and S̃) to 4 equations and

4 unknowns by using the tangential stress balance 8.14 and substituting S̃ in the normal stress
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balance and the kinematic equation, resulting in

Λ(f ′(1)− f ′′(1)− κ2f(1)) + w0(1)iκ(f
′(1)− f ′′(1)− κ2f(1))− iκf(1) = 0

f(1)(−Λκ2 − w0(1)iκ
3 − iκ) + f ′(1)(Λ + w0(1)iκ) + f ′′(1)(−Λ− iκw0(1)) = 0

(8.18)

and for the normal balance

Bo p̃(1) + f(1)(−2iκCa−Dκ2 + κ4) + f ′(1)(−2iκCa− κ2 +D) + f ′′(1)(κ2 −D) = 0 (8.19)

8.3.2. Dispersion relation formulation

We can now formulate a system of equations for the coefficients. The first two equations arise

from imposing no-slip on the wire. In terms of the general solution they are given by:

a1αI0 (ακ)

2
− a1I1 (ακ)

κ
+ a2I1 (ακ) +

a3αK0 (ακ)

2
+
a3K1 (ακ)

κ
− a4K1 (ακ) = 0

a1αI1 (ακ)

2
+ a2I0 (ακ)−

a3αK1 (ακ)

2
+ a4K0 (ακ) = 0

(8.20)

But we can write this more compactly using vector formulation:

v(α) · a = 0
∂v

∂r
(α) · a = 0[

v(1)(−Λκ2 − w0(1)iκ
3 − iκ) +

∂v

∂r
(1)(Λ + iκw0(1)) +

∂2v

∂r2
(1)(−Λ− iκw0(1))

]
· a = 0[

Boq(1) + v(1)(−2Caiκ−Dκ2 + κ4) +
∂v

∂r
(1)(−2Caiκ− κ2 +D) +

∂2v

∂r2
(1)(κ2 −D)

]
· a = 0

(8.21)

This is indeed a linear system of equations for a, in particular defining the rows matrix M =

M(Λ) as the transpose of the above equations, and the system is

M(Λ)



a1

a2

a3

a4


= 0 (8.22)
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Where the exact analytical form of M(Λ) is given in the appendix A.8. For this to have non

trivial solutions we require that det(M(Λ)) = 0. So for each κ the problem is set up and solved

numerically using the secant method from Python’s Scipy package.

8.3.3. Analytical solution to the Stokes Flow dispersion relation

Using a symbolic manipulation program, such as Mathematica (43), we can compute the deter-

minant in eq. (8.22) exactly. Even in the matrix it is easy to see the determinant will be linear

in Λ. Thus, given the determinant it is easy to solve for the growth rate Λ. However, the full

analytical solution for Λ would not fit in a single page, so it has not been included as part of the

report. A more interesting remark is that expanding the dispersion relation in the limit α→ 1

we recover exactly the same dispersion relation as for the long wave formulation, eq. (4.28), so

that the growth rate has size O((1− α3)). This makes physical sense as when α is close to one

the film is thin and the long wave results are expected to hold. This will be verified numerically

in the next section.

8.4. Numerical Results for the Stokes flow dispersion relation

We can then plot the dispersion relation and compare with the reduced order models (which we

have in closed form 4.23). In the forthcoming figures we will present results for three different

α regimes and 3 different Magnetic Bond number values.
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Figure 8.1.: Dispersion relations for a thin wire (thick film), where α = 0.1, and several values
of the magnetic number. The main appreciation here is that Ma = 0.5 is also a
bifurcation point in the Stokes regime.
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Figure 8.2.: Dispersion relations for α = 0.5, and several values of the magnetic number. The
main appreciation here is that Ma= 0.5 is also a bifurcation point in the Stokes
regime.
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Figure 8.3.: Dispersion relations for a thick wire (thin film), where α = 0.9, and several values
of the magnetic number. We see great agreement between the thin film reduced
order models and the Stokes flow, as expected from the fact the film is thin.

We can also plot the neutral curves for the Stokes limit. Extraordinarily, these match exactly

with the long wave formulation, suggesting the stabilising role of the magnetic field is quite

universal. We suspect this already from the above charts, as in all of them the intersection

points with the x axis agree for all limits. This is confirmed visually below in fig. 8.4.
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Figure 8.4.: Neutral curves for the Stokes limit (in orange) obtained as contours of the real part
of Λ = Λ(κ,Ma) match exactly with the neutral curves for the long wave limit (blue
dashed line)

Once the dispersion relation has been obtained by imposing the solvability condition it is in-

teresting to see how the eigenfunctions for the stream function look like for several values of κ

and α. We repeat the same values for α as in the previous plots for consistency. It is important

to note that the eigenfunctions are free up to a scaling, as when the solvability condition is

imposed the linear system in eq. (8.21) has infinite solutions. In particular the eigenfunctions

have been chosen so that Im(ψ) = 1 at r = 1. This is displayed in fig. 8.5, fig. 8.6 and fig. 8.7
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Figure 8.5.: Eigenfunctions for the stream function in the Stokes limit for α = 0.1, the thick
film limit.
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Figure 8.6.: Eigenfunctions for the stream function in the Stokes limit for α = 0.5.
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Figure 8.7.: Eigenfunctions for the stream function in the Stokes limit for α = 0.9, the thin film
limit.

The above figures further serve as a partial check that the solvability condition has been satisfied

successfully, as we can see the boundary conditions at r = α are satisfied. This concludes our

exploration of the stability of the system in the Stokes limit. This now makes us ponder what

will the situation look like when the Reynolds number is not small? With this in mind we move

on to the next chapter, studying stability for arbitrary Reynolds numbers.
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9. Moving Cylinder

In this chapter we will study the effect of displacing the wire has on the solutions. This is a

natural generalisation to make, as in many applications the wire is not stationary. In particu-

lar, we will focus on longitudinal displacement, meaning the wire moves with nondimensional

velocity pointing in the axial component: V = (0, 0, V )⊺.

This is a ferrohydrodynamic cylindrical analogue to the classical Landau-Levich drag out prob-

lem in flows where a plate is coated with a liquid film (30; 31). However, instead of adopting

a matched asymptotic expansion approach, with one static layer and one layer solve under the

lubrication assumption (47) we will follow a long wave philosophy.

9.1. Long wave limit

We can proceed as in chapter 4, with the equations from section 3.2. As for the stationary

cylinder case, we can solve for u and w. The calculation is very similar, so it is omitted here,

and the only difference is that when the boundary conditions are applied an additional constant

term is included in w(r, z, t). This follows from the linearity of the equations in the long wave

limit. As before, we are interested in the value of the velocities at the interface r = S, given

here, and compared with (4.13) and (4.10), which are labeled us and ws respectively.

u(S, z) = us(S, z) =
(S2(pz − 1))z

8S

[
α2 − S2 + 2S2 log

S

α

]
− pzz

16S
(α2 − S2)2

w(S, z) = ws(S, z) + V = −1

4
(pz − 1)

[
α2 − S2 + 2S2 log

S

α

]
+ V

(9.1)
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Proceeding as in chapter 4, we now seek a conservation equation derived from the kinematic

condition: ∂tS + w(S, z)∂zS = u(S, z). Introducing u and w into this condition,

∂tS + (ws(S, z) + V )∂zS = us(S, z) (9.2)

Recall that we are interested in writing an equation of the form 8∂t(S
2) = ∂z(F (S, z)), as in

(4.16), and from there we have already derived an Fs(S, z) such that

8∂t(S
2) = ∂z(Fs(S, z)) ⇐⇒ ∂tS + ws(S, z)∂zS = us(S, z) (9.3)

Thus in our new case, we can write

∂tS + (ws(S, z) + V )∂zS = us(S, z) =⇒ ∂tS + ws(S, z)∂zS = us(S, z)− V ∂zS

16S∂tS + 16Sws(S, z)∂zS = 16Sus(S, z)− 16V S∂zS

(9.4)

now the stationary part can be written as 16∂t(S
2) = ∂z(Fs(S, z)), leading to

16∂t(S
2) = ∂z(Fs(S, z))− 16V S∂zS (9.5)

and noting that

−16V S∂zS = −∂z(8V S2) =⇒ 16∂t(S
2) = ∂z(Fs(S, z))−∂z(8V S2) = ∂z(Fs(S, z)−8V S2) (9.6)

The conservation equation is slightly different from the zero velocity case. In particular, when

we substitute Fs(S, z) from (4.16), we find

8(S2)t =
∂

∂z

(
(pz − 1)

(
2S2(α2 − S2 + 2S2 log

(
S

α

))
− (α2 − S2)2)− 8V S2

)
(9.7)

and the same equation for the pressure p(S, z, T ) as in the long wave section, obtained by taking

the long wave limit of the normal stress condition.
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9.2. Thin film limit

Proceeding as in the stationary case, it is interesting to consider the behaviour of the equation

when the film is thin. As in chapter 4, we introduce S = α + η and consider the case |η|≪ 1.

We can reach a similar equation as the Benney type eq. (4.20), and indeed the derivation is

mostly the same so it is ommited here.

ηt +
1

3

∂

∂z

[
η3(1 + ηz + ϵ2ηzzz)

]
+
V α

2

∂

∂z

((
1 +

η

α

)2)
= 0 (9.8)

In particular, it is interesting to note that the moving cylinder does not have a effect on the

linear stability of the system, as the new terms in the equations only obtain first order spatial

derivatives, which act as transport terms when linearised, i.e. only contribute to the imaginary

part of the dispersion relation.

However, this means we can now find values of V such that the transport part of the dispersion

relation is zero, meaning the speed required for the cylinder to move up to exactly counteract

gravity at the linear order. In particular, the value of V required for this is is given by

V =
1

2
(α2 − 1− 2 logα) ≈ (1− α)2 α→ 1 (9.9)

9.3. Numerical Results

We can compare the thin film equation for the static (eq. (4.20)) and translating cylinder case

(eq. (9.8)). Several cases are presented for different values of V in fig. 9.1, fig. 9.2 and fig. 9.3,

where the system is set up at the stability threshold, Ma = 0.5. As is the case in other chapters,

the initial condition is given by:

η(z, 0) = (1− α)(1 + δ sin(k∗z)) (9.10)

Where k∗ is the fastest growing mode according to linear theory and δ = 0.95. The film thickness

is chosen to be α = 0.5 in all simulations.
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Figure 9.1.: The translation velocity is chosen so that it acts in the same direction as gravity,
accelerating the film’s fall. Here ϵ = 0.1, Ma = 0.5 and V = 2(1− α)2
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Figure 9.2.: The translation velocity given exactly as in eq. (9.9), so that the fluid film does
not move upwards or downwards at linear order. Here ϵ = 0.1, Ma = 0.5 and
V = (1− α)2
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Figure 9.3.: The translation velocity is chosen so that it is much stronger than gravity, and the
fluid film advances upwards. Here ϵ = 0.1, Ma = 0.5 and V = −(1 − α)2. (Recall
gravity acts in the positive z direction.)

As a comparison to the results in section 6.2, travelling waves still form but their morphology
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is altered by the wire translation. In the same spirit as before, numerical experiments were

conducted for 3 distinct values of V , and ϵ = 0.1 for all cases and Ma = 0.2.

Figure 9.4.: The translation velocity is chosen so that it acts in the same direction as gravity,
accelerating the film’s fall. Here ϵ = 0.1, Ma = 0.2 and V = 2(1 − α)2. The wave
forms at a similar time compared to the static case.

Figure 9.5.: The translation velocity given exactly as in eq. (9.9), so that the fluid film does
not move upwards or downwards at linear order. Here ϵ = 0.1, Ma = 0.2 and
V = (1− α)2.
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Figure 9.6.: The translation velocity is chosen so that it is much stronger than gravity, and the
fluid film advances upwards, until it reaches a critical time where the wave direction
is reversed and a travelling wave is formed, but this happens later than in the static
case. Here ϵ = 0.1, Ma = 0.2 and V = −(1− α)2.

As a general observation, we see that when the cylinder travels upwards gives travelling waves

of larger amplitude than when the cylinder travels downwards.
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10. Stochastically driven currents

Stochastic partial differential equations have received an immense amount of attention in recent

decades thanks to their exotic properties and wide applicability in the physical, biological and

engineering sciences (11; 19). However, in many cases their derivation from physical problems

requires complicated constructions and sometimes unrealistic assumptions (33; 40; 41). In the

ferrofluids problem however they can be naturally derived just by assuming the current is

stochastic, an exceedingly natural assumption to make considering the nature of electricity.

Thus, in this section we model the current intensity as a Brownian motion, It = I0 + σWt,

where Wt is a standard Brownian motion (14; 27; 36) and σ is the standard deviation. We aim

to understand the role stochasticity plays in the linear stability results derived in chapter 4 as

well as the travelling waves from section 6.2. This simple and realistic modelling assumption

will lead to novel results not seen as of yet in the deterministic setting.

Two different situations will be analysed in this chapter. First, a brief investigation into the

effect stochasticity has on the linear stability results derived in chapter 4, where we verify

random currents only have mild effects. This is not the case however in the second situation,

where it is shown that stochastic currents can lead to the decay of the travelling wave derived

in section 6.2. This is a nonlinear phenomenom that has not been described in systems of thin

films equations.

10.1. At the linear stability threshold

In this section we analyse the role random currents play in the linear stability results derived

for the long wave equations. In order to simplify the physics involved it is assumed σ << 1.
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This means that we can neglect the electric field induced by the time dependent magnetic field,

as discussed in section 2.1.5. We solve eq. (4.20), but instead of having a constant magnetic

bond number, this parameter is now stochastic, and in particular Ma(t) ∼ I(t)2 = (I0+σWt)
2.

The equation is repeated here for convenience.

∂tη +
1

3

∂

∂z
(η3(1 + (1− 2Ma)ηz + ϵ2ηzzz) = 0 (10.1)

In the numerical scheme, we initialize the system by the fastest growing linear perturbation,

but we round the wavenumber to an integer to ensure the initial condition satisfies the periodic

boundary conditions. Thus the initial conditions are the same as for the previous chapter.

The system is then iterated until a final time of t = 200 and the results are averaged. In

particular, N = 2024 realisations were simulated. In fig. 10.1 a graph is presented that shows

the maximum value of the wave profile at the final iteration plotted against the averaged current

for that particular realization of the Brownian motion Wt. The interesting behaviour present

here is that when the average current is smaller than expected the maximum value is larger

than the equivalent deterministic case for the same average current.

Figure 10.1.: Maximum value of profile at final iteration against mean current, N = 2024. Note
how the stochastic realizations where the mean current is below the average of
I0 = 1 showcase larger maximum values than what would be expected in the
deterministic case for the same current.

The data can be further analysed by constructing a histogram of the maximum values at the final
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iteration. This is done in fig. 10.2, where we observe the distribution is skewed towards larger

values, i.e. the tails are heavier in the right hand side. This is confirmed by computing the skew,

that comes out to 2.615 > 0, confirming the distribution is skewed to the right. Furthermore,

the excess kurtosis value of 10.44 indicates the tails are very heavy, and the distribution is far

from being normal, unlike the case for standard brownian motion. This is expected from the

nonlinearity inherent to the problem.

Figure 10.2.: Histogram of max values at final iteration

10.2. Stochastically driven decay of travelling waves

In section 6.2 it was shown that the long wave equation eq. (4.20) can develop localised travelling

waves that do not change shape with time. Further, it was shown that they are stable to

perturbations in the initial conditions. Moreover, in section 6.2.1 that travelling waves can still

be developed if the intensity varies periodically. Hence, in this section we analyse the stability

of these solitary waves to stochastic perturbations to the current, of the form It = I0 + σWt.

10.2.1. Results

The main result is that the travelling wave solutions discussed previously are unstable to stochas-

tic perturbations to the current. Furthermore as the volatility σ increases, the travelling wave
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decays faster. This can clearly be observed in fig. 10.3.The stochastically driven decay can also

visualised using a two dimensional contour as well, as presented in fig. 10.4.
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Figure 10.3.: Stochastic decay of traveling wave. The color gradient represents the different
volatility values. The vertical axis shows the average maximum value of the wave
profile at any given time. It is clear that a larger volatility leads to a faster decay.
Each of the ”lines” is the average of thousands of realisations.
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Figure 10.4.: Stochastic decay of traveling wave. Volatility σ on the horizontal axis and time in
the vertical axis, and the maximum height given by the colormap.

These novel results showcase stochastic forcing can have effects on stability of solutions unattain-

able for deterministic systems. The instability can be understood by considering the following
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argument. The travelling wave solution is a homoclinic orbit (an orbit that starts and finishes

in the same point) in the phase space diagram of the thin film equation (4.20) when transformed

into the coordinate ξ = x− ct. Some example orbits are showcased in fig. 10.5. This orbit is an

attractor as discussed in section 6.2, but the exact shape of the orbit depends on the values of

the parameters, in particular on Ma. In the stability analysis in section 6.2 all parameters are

held constant, but now Ma varies with time as a result of the stochastic forcing. This means

the exact shape of the orbit continuously changes, and in particular the system is unstable.

However, we saw in section 6.2.1 that this does not necessarily mean travelling waves can not

develop, but they have some time structure as well, i.e. periodicity. Thus, we must conclude

that the stochasticity has a stronger effect than the deterministic time dependence in eq. (7.8),

as the travelling disappears completely. This qualitative difference between the deterministic

and the stochastic problem is the key difference that allows these mathematical phenomena

to occur. Compared to other similar stochastic problems, i.e. (40; 41), this problem is more

nonlinear. We can hypothesise that the nonlinearity distributes the stochastic forcing to stabilise

the unstable modes.
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Figure 10.5.: The projection of some periodic orbits for different values of the magnetic bond
number. As a remark, the careful observer might be concerned that the orbits
cross, but this is because this plot is a projection of a four dimensional dynamical
system into two dimensions, so the orbits are not necessarily crossing.

Further, in fig. 10.5 we observe that as the magnetic bond number is increased towards the

stability threshold the orbits shrink, to the point that at Ma = 1
2 they will collapse to the

perfectly cylindrical solution (i.e. the a flat profile, which is a single point in the phase space).
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11. Numerical Methods

In this short chapter we comment and describe the numerical methods and algorithms used

throughout the project. Numerical schemes are essential in modern applied mathematics, for

most problems are intractable analytically and even when simplified they require a computa-

tional method to solve them.

11.1. The pseudospectral method

The main method used to solve the nonlinear partial differential equations present in this

investigation is the pseudospectral method (17). The pseudospectral method is very useful for

solving problems with nonlinear terms and periodic boundary conditions, such as eq. (4.16) and

eq. (4.20). This method is optimal for this task as it treats the derivatives in frequency space

(recall the FFT diagonalises the derivative operator (49)), and the nonlinearities are evaluated in

a natural way in real space. In particular, for a PDE of the form ∂tu(x, t) = f(u, ux, uxx, . . . ) the

equation is discretised in space (thus using the method of lines, where (ũ)k(t) = u(k)(t) = u(xk, t)

is the discretised vector of unknowns)

∂tu
(k) = f(u(k), u(k)x , u(k)xx , . . . ) (11.1)

where the jth spatial derivative is computed according to (17)

∂jx(ũ) = IFFT

((
2πin

L

)j

FFT(ũ)

)
(11.2)
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Where the FFT is the Fast Fourier Transform (of a vector) and the IFFT is the inverse Fourier

Transform. This is a system of ordinary differential equations, which in vector form may be

written as

dũ

dt
= f(ũ, . . . , ∂jx(ũ), . . . ) (11.3)

Finally, this coupled system of nonlinear ordinary differential equations is evolved in time using

a stiff solver. In particular, in this investigation the method ’BDF’ (21; 24) was used. This

algorithmic combination is flexible, robust to stiff problems and relatively fast thanks to the

spectral evaluation of the derivatives. Python was the programming language of choice, and

abundant use was made of Scipy (15) and Numpy (23). In terms of the discretisation accuracy,

most problems were solved with either N = 256 or N = 512 modes.

Scipy
Numpy
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12. Conclusion and further work

The problem of falling axisymmetric ferrofluids has been analysed from a plethora angles. In

particular, from a long wave formulation where we discovered the magnetic field plays a stabil-

ising role, to a more traditional hydrodynamic stability framework that confirmed our findings.

Interesting mathematical solutions to the reduced order partial differential equations were pre-

sented in the form of shape preserving travelling waves, which were present even under the

influence of time dependent magnetic fields and a translating cylinder, and were shown to be

stable to perturbations using numerical methods.

Moreover, the natural incorporation of randomness into the problem opened up new exciting

research avenues, by showing how the aforementioned travelling waves can be damped or com-

pletely eliminated by introducing a stochastically forced electric current, a behaviour unseen in

the deterministic case.

A natural extension to the linear stability for the Stokes limit is considering the problem for an

arbitrary and finite, Reynolds numbers. This is a considerably harder problem than the Stokes

flow limit, as the background flow will appear in the linearised equations through the advection

term u · ∇u. In particular, this means that the pressure field will not be harmonic, as it was

the case in eq. (8.8). This in term means that we cannot solve for the stream function or the

pressure field analytically, and we must consider the problem numerically. The author proposes

finding the correction to the Stokes dispersion relation by solving for Λ = Λ0 + ReΛ1, in an

asymptotic fashion and using the Fredholm Alternative as a solvability condition as a natural

next step.

An interesting avenue to pursue further is to more precisely understand the role oscillating
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currents play in the stability of thin ferrofluid films, in particular by considering the full form

of the Maxwell stress tensor for fields as given in section 2.1.6. We suspect the bulk equations

will still be standard Navier-Stokes for the same assumptions, but the normal stress balance

will have additional terms.

Further, methods such as those presented in chapter 5, where differential equations were ob-

tained for the effective growth rates could be implemented to the Stokes problem, although the

ODE system would be considerably harder to solve analytically.

Understanding the stability of the travelling waves found for the long wave problem from a

more theoretical perspective is also desirable, although the intrinsic nonlinearity of the solution

makes this a daunting task.

Finally, this thesis has successfully bridged the gap between the ferrofluid research area with

the more traditional problem of falling viscous fluid films, attacking the problem from several

angles to ensure the consistency and applicability of the solutions.
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A. Appendix

A.1. Code

The code for all the simulations, solvers and numerical schemes has been made available
in the authors Github profile, and can be accessed using this link. (https://github.com/
JavierChico/M4R-codes).

A.2. Jefimenko integrals

A.2.1. Liénard-Wiechert potentials

In the appendix the hat notation has been dropped for the dimensional variables. To derive the
Jefimenko integrals eq. (2.4), we consider the Liénard-Wiechert potentials (32; 52).

ϕ(r, t) =
1

4πϵ0

∫
ρ(r′, tr)

|r− r′|
dr′

A(r, t) =
µ0
4π

∫
J(r′, tr)

|r− r′|
dr′

(A.1)

Here, tr = t−|r− r′|/c is the retarded time and the integrals are over the entire space. Finally,
we obtain the Jefimenko integrals eq. (2.4) with the equations (20; 25)

E = −∇ϕ− ∂tA

H = ∇×A
(A.2)

A.2.2. Electric field

Although the leading order behaviour is sufficient for our setting, using power symbollic calcu-
lators we can integrate the Jefimenko equations 2.4. Recall that the current density is non-zero
in the longitudinal direction, and in particular given by

J =

(
0, 0,

I0
Wire cross sectional area

cos(Ωt)

)⊺

We can first integrate the second Jefimenko equation, listed here for convenience

E = −µ0
4π

∫
1

|x− x′|
∂J(x′, tr)

∂t
d3x′

Github
https://github.com/JavierChico/M4R-codes
https://github.com/JavierChico/M4R-codes
https://github.com/JavierChico/M4R-codes
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Introducing cylindrical coordinates, the volume integral can be explicited and factored to

Ez =
µ0I0Ω

4πA

∫ 2π

0
dφ′

∫ a

0
r′dr′

∫ ∞

−∞
dz′

[
1√

r2 + (z − z′)2
sinΩ(t−

√
r2 + (z − z′)2

c
)

]

integrating along the radial and azimuthal directions leads to an expression involving a single
integral

=
I0µ0Ω2π

4πA
a2/2

∫ ∞

−∞
dz′

[
1√

r2 + (z − z′)2
sinΩ(t−

√
r2 + (z − z′)2

c
)

]
Now, let u2 = r2+(z− z′)2 = |x−x′|2. Then udu = −(z− z′)dz′, or dz′/u = −du/(z− z′), the
limits change to r and ∞ and we need to account for an extra 2 for the negative z′. Thus, the
integral is now equal to

=
I0µ0Ω2π

4πA
a2
∫ ∞

r
du

[
1√

u2 − r2
sinΩ(t− u

c
)

]
Expanding the sin function using the sum formulas,

sinΩ(t− u

c
) = sinΩt cos(Ω

u

c
)− cosΩt sin(Ω

u

c
)

so that we can write the electric field as the sum of two different integrals that depend only on
r (and not on t)

Ez =
I0µ0Ω

2π
(sin(Ωt)I1(r)− cos(Ωt)I2(r))

with

I1(r) =

∫ ∞

r
du

[
1√

u2 − r2
cosΩ(

u

c
)

]
I2(r) =

∫ ∞

r
du

[
1√

u2 − r2
sinΩ(

u

c
)

]
(A.3)

We can proceed with the aid of Mathematica (43) or Python’s symbollic algebra library, Sympy.
The integrals are given by

I1(r) =
πc

Ωr
G0,2

3,1

(
1
2 ,

1
2 0

0

∣∣∣∣ 4c2Ω2r2

)
= log

(
2c

rΩ

)
J0

(
rΩ

c

)
−Hypergeometric0F1Regularized(1,0)

(
1,−r

2Ω2

4c2

) (A.4)

I2(r) =
πJ0

(
Ωr
c

)
2

Where G is the Meijer-G function and J1 is a Bessel function of the first kind of order 0. Hence
we have obtained an exact expression for the electric field E. In our case however, c is large
compared to the other physical variables so we can expand I2(r) in powers of c

I2 =
π

2
− πΩ2r2

8c2
+O

(
1

c3

)
(A.5)

repeating the same expansion for I1(r) we discover the leading order solution has the expected

Mathematica
Sympy
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logarithmic dependence on r from 2.13, and furthermore, there is no O(c−1) term in any of the
expansions. (If you stare at Ampere’s law this makes sense, because the electric field there acts
in second order in c−1, so there is no ”room” for an O(c−1) term in any of the fields, as this
would mean automatically mean they have an O(c) term)

I1 =
(
−Hypergeometric0F1Regularized(1,0)(1, 0) + log(c)− log(rΩ) + log(2)

)
+O

(
1

c2

)
= (−γ + log(c)− log(rΩ) + log(2)) +O

(
1

c2

)
(A.6)

Further, from the leading order terms for I1 and I2 we can deduce the f(t) term hypothesized
in the previous section. Indeed, we see

f(t) =
I0µ0Ω

2π

(
sin(Ωt)(log(2c)− log(Ω)− γ)− cos(Ωt)

π

2

)

A.2.3. Magnetic field

This is slightly more convoluted than the calculation for the electric field, as we must consider
the contribution from both J and ∂tJ terms to the Jefimenko integral (2.4) First we consider
the contribution from the current density, given by

µ0
4π

∫ [
J(x′, tr)× (x− x′)

|x− x′|3

]
d3x′

proceeding as before we obtain that only the angular component is non zero, as this the direction
if the cross product. Integrating out the radial and azimuthal contributions, we reach

=
µ0
4π

∫ ∞

−∞

[
I(tr)r

(r2 + (z − z′)2)3/2

]
dz′

Using the same change of variables as for the electric field this simplifies to

µ0I0r

2π

∫ ∞

r

[
cos(Ω(t− u

c ))

u2
√
u2 − r2

]
du

We can now proceed with the symbolic calculations, reaching a very complicated analytical
expression.

1

8
I0µ

(
2

r
cos(tΩ)G2,0

1,3

(
r2Ω2

4c2
|

3
2

0, 1, 12

))
+

Ωsin(tΩ)
(
−πrΩHHH0

(
rΩ
c

)
J1
(
rΩ
c

)
+ πrΩHHH1

(
rΩ
c

)
J0
(
rΩ
c

)
+ 2cJ1

(
rΩ
c

)
− 2rΩJ0

(
rΩ
c

)
+ 2c

)
c2

(A.7)
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Where HHH is the Struvel H function (1). And we can expand this to

I0µ cos(tΩ)

2πr
+
I0µΩsin(tΩ)

4c
+O

(
1

c2

)

so in particular we recover the expected solution to leading order. Now moving on the second
part of the integral in Jefimenko’s formula, we consider the contribution of ∂tJ. The integral is
given by

−µ0
4π

∫ [
x− x′

|x− x′|2
× 1

c

∂J(x′, tr)

∂t

]
d3x′ = − µ0

4πc

∫ ∞

−∞

[
I ′(tr)r

r2 + (z − z′)2

]
dz′ (A.8)

We will proceed in the same way as for the other two integrals. Integrating out the radial and az-
imuthal components we apply the same change of variables. The result after the aforementioned
change of variables is

µ0I0rΩ

2πc

∫ ∞

r

[
sin(Ω(t− u

c ))

u
√
u2 − r2

]
du

we can split the integral in two with the angle sum identity for the sum

µ0I0rΩ

2πc

(
sinΩt

∫ ∞

r

[
cos(Ωu

c )

u
√
u2 − r2

]
du− cosΩt

∫ ∞

r

[
sin(Ωu

c )

u
√
u2 − r2

]
du

)

=
µ0I0rΩ

2πc
(sinΩtI3(r)du− cosΩtI4(r))

(A.9)

Again, we compute two different integrals here. First, we compute

I3(r) =

∫ ∞

r

[
cos(Ωu

c )

u
√
u2 − r2

]
du =

π
(
−πrΩHHH0

(
rΩ
c

)
J1
(
rΩ
c

)
+ rΩ

(
πHHH1

(
rΩ
c

)
− 2
)
J0
(
rΩ
c

)
+ 2c

)
4cr

=
π

2r

(
−Ωr

c
1F2

(
1
2

1, 32

∣∣∣∣−Ω2r2

4c2

)
+ 1

)
(A.10)

This is expanded in inverse powers of the speed of light to give

I3(r) =
π

2r
− πΩ

2c
+O

(
1

c2

)
It is important to note the 1/c factor in equation 2.23, so only the leading order term is relevant
to approximated the first order corrections to the magnetic field. Now, for the second integral,
that associated with the sin, we reach

I4(r) =

∫ ∞

r

[
sin(Ωu

c )

u
√
u2 − r2

]
du =

π

2r
G0,2

3,1

(
1
2 ,

1
2 1

0

∣∣∣∣ 4c2Ω2r2

)
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expanding in powers of c

I4(r) = −(Ω(− log(c) + log(r) + log(Ω) + γ − 1− log(2)))

c
+O

(
1

c2

)
= −Ω

c
(γ − 1 + log(

Ωr

2c
)) +O(c−2)

Considering again the 1/c factor in 2.23 we see this does not contribute to the first order
correction.

A.3. Computation of components of the stress tensor for the
free-boundary

A.3.1. Tangential stress balance

For the tangential stress balance the following term is required:

n · Tv · t

first we compute the components of the viscous stress tensor

Tv = µ

 2∂ru 0 ∂zu+ ∂rw

0 2u(r,z)
r 0

∂zu+ ∂rw 0 2∂zw


Then, we can proceed to compute Tv · t

Tv · t = µ


2Sz∂ru√
S(z)2+1

+ ∂zu+∂rw√
S(z)2+1

0
Sz(∂zu+∂rw)√

S(z)2+1
+ 2∂zw√

S(z)2+1


we can take the dot product of this vector with n to obtain the desired term:

n · Tv · t = µ

∂zu+∂rw√
S(z)2+1

− 2Sz∂zw√
S(z)2+1√

S(z)2 + 1
+

Sz

(
2∂ru√
S(z)2+1

− Sz(∂zu+∂rw)√
S(z)2+1

)
√
S(z)2 + 1

this can be significantly manipulated to obtain

−2Sz (∂zw − ∂ru)−
(
S2
z − 1

)
∂zu+ S2

z (−∂rw) + ∂rw

S(z)2 + 1

A.3.2. Normal Stress Balance

We must consider all the terms in the stress tensor now, to understand the condition:

n · [T ] · n = σ∇ · n
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The pressure term is trivial, as it is an isotropic diagonal tensor, so it is simply p First we
compute the curvature, or the divergence of the normal vector:

κ = ∇ · n =
1

r
√
S2
z + 1

+
S2
zSzz

(S2
z + 1)3/2

− Szz√
S2
z + 1

this is evaluated at the free boundary, r = S and it can thus be simplified to

κ = ∇ · n =
1√

1 + Sz

(
1

S
− ∂2zS

1 + S2
z

)
Moving on to the contribution from the viscous stress tensor, we need n ·Tv ·n. The components
of the viscous stress tensor where computed in the previous section so we focus on

Tv · n =


2∂ru−Sz(∂zu+∂rw)√

S2
z+1

0
−2Sz∂zw+∂zu+∂rw√

S2
z+1


and finally, dotting this with the normal vector again,

n · Tv · n =

2∂ru√
S2
z+1

− Sz(∂zu+∂rw)√
S2
z+1√

S2
z + 1

−
Sz

(
∂zu+∂rw√

S2
z+1

− 2Sz∂zw√
S2
z+1

)
√
S2
z + 1

which simplifies to
2
(
−Sz (∂zu+ ∂rw) + S2

z∂zw + ∂ru
)

S2
z + 1

A.4. Long-wave expansions

Starting from eq. (4.16), we can substitute S = α+ η, and take the limit as η is small. Consid-
ering the left hand side first,

8∂t(S
2) = 16S∂tS = 16(α+ η)∂tη = 16α∂tη

(
1 +

η

α

)
Moving on to the right hand side, first we must consider the ∂zp

p =
1

S
− ϵ2Szz −

Ma

S2

thus we reach that

∂zp− 1 =
2Ma∂zη

(α+ η(z))3
− ∂zη)

(α+ η)2
+ ϵ2

(
−∂3zη

)
− 1 = −

(
1 +

∂zη

(α+ η)2

(
1− 2Ma

α+ η

)
+ ϵ2∂3zη

)
Considering the second term in the parenthesis, first we expand

(α2 − S2)2 = 4α2η2 + 4αη3 + η4
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and then, the other term is

2(α+η(z))2
(
α2 − (α+ η(z))2 + 2(α+ η(z))2 log

(
α+ η(z)

α

))
= 4α2η2+

28

3
αη3+

19η4

3
+O

(
η(z)5

)
subtracting both of this we obtain the second factor in the parenthesis is (higher order terms
truncated)

16

3
αη3 +

16η4

3
=

16η3α

3

(
1 +

η

α

)
Thus, reassembling eq. (4.16), we reach

16α∂tη
(
1 +

η

α

)
= − ∂

∂z

{
16η3α

3
(1 +

η

α
)

(
1 +

∂zη

(α+ η)2

(
1− 2Ma

α+ η

)
+ ϵ2∂3zη

)}
we can now divide by 16α and move all terms to the left hand side to obtain

∂tη
(
1 +

η

α

)
+

1

3

∂

∂z

{
η3(1 +

η

α
)

(
1 +

∂zη

(α+ η)2

(
1− 2Ma

α+ η

)
+ ϵ2∂3zη

)}
= 0

A.5. Long wave dispersion relation

∂zp = − 1

S2
∂zS − ϵ2∂3zS + 2Ma

1

S3
∂zS = −(1− 2Ma)ikδS̃ϕ− ϵ2(ik)3δS̃ϕ+O(δ2)

= (−(1− 2Ma)ik − ϵ2(ik)3)δS̃ϕ+O(δ2)

8∂t(S
2) = 8∂t(1 + 2δS̃ϕ+O(δ2)) = 16δS̃λϕ+O(δ2)

we further consider

2S2

(
α2 − S2 + 2S2 log

(
S

α

))
− (α2 − S2)2

(α2 − S2)2 = α4 − 2S2α2 + S4 = α4 − 2α2(1 + δS̃ϕ)2 + (1 + δS̃ϕ)4

= α4 − 2α2(1 + 2δS̃ϕ) + (1 + 4δS̃ϕ) +O(δ2)

= (α2 − 1)2 +O(δ2)

for the first part, we directly use 1 + 2δS̃ϕ instead of S2

2S2

(
α2 − S2 + 2S2 log

(
S

α

))
=

2(1 + 2δS̃ϕ)
(
α2 − (1 + 2δS̃ϕ) + 2(1 + 2δS̃ϕ) log(1 + δS̃ϕ)− 2(1 + 2δS̃ϕ) logα

)
now

log(1 + δS̃ϕ) = δS̃ϕ

thus
2(1 + 2δS̃ϕ)

(
α2 − (1 + 2δS̃ϕ) + 2(1 + 2δS̃ϕ)δS̃ϕ− 2(1 + 2δS̃ϕ) logα

)
keeping only linear terms

2(α2 − 1− 2 logα− 4δS̃ϕ− δS̃ϕ logα) + 4δS̃ϕ(α2 − 1− 2 logα) =
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2(α2 − 1− 2 logα) + δS̃ϕ(−8− 2 logα+ 4((α2 − 1− 2 logα))

Considering the linear terms of the product inside the derivative in equation (4.16)

(∂zp− 1)

(
2S2

(
α2 − S2 + 2S2 log

(
S

α

))
− (α2 − S2)2

)
−(2(α2 − 1− 2 logα)− 8δS̃ϕ(α2 − 1− 2 logα)− (α2 − 1)2

+(−(1− 2Ma)ik − ϵ2(ik)3)δS̃ϕ(2(α2 − 1− 2 logα)− (α2 − 1)2)

taking a derivative with respect to z annihilates all the constant terms, and gives us

−8ikδS̃ϕ(α2 − 1− 2 logα)− ((1− 2Ma)ik + ϵ2(ik)3)δS̃ϕ(2(α2 − 1− 2 logα)− (α2 − 1)2)

reconstructing the equation and cancelling δS̃ϕ we reach the linear dispersion relation:

λ(k) =
k2

16

(
ϵ2k2 + 2Ma− 1

)
((α2 − 1)2 + 2(2 logα+ 1− α2))− ik

2
(2 logα+ 1− α2) (A.11)

A.6. Computation of the stream function

From the equations obtained for the radial and axial velocities, u(r, z) and w(r, z) the Stokes
stream function can be computed by integration. Writing

w = −1

r

∂ψ

∂r

We can integrate this to

ψ(r, z) = − 1

16
r2 (pz − 1)

(
−2α2 + r2 + S2

(
2− 4 log

( r
α

)))
+ f(z)

where f(z) is an arbitrary function of z. Substituting into the second velocity-stream function
relation we find an expression for f ′(z)

u(r, z) =
1

r

∂ψ

∂z
=

=
1

r

[
1

16
r2
(
4S (pz − 1)

(
2 log

( r
α

)
− 1
)
Sz − pzz

(
−2α2 + r2 + S2

(
2− 4 log

( r
α

))))
+ f ′(z)

]
Solving for f ′(z)

f ′(z) =
1

16
α2
(
2S2pzz − α2pzz + 4S (pz − 1)Sz

)
and finally integrating (the integration constant is unimportant)

f(z) =
1

8
α2S2 (pz − 1)− 1

16
α4pz

This can be reassembled to obtain the stream function.

ψ(r, t) =
1

16

(
2S2 (pz − 1)

(
α2 + 2r2 log

( r
α

)
− r2

)
−
(
r2 − α2

)2
pz + r4 − 2α2r2

)
(A.12)
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We can add a constant, α4, without altering the dynamics, to obtain a more compact final form
for the stream function

ψ(r, t) =
(∂zp− 1)

16

(
2S2

(
α2 + 2r2 log

( r
α

)
− r2

)
−
(
r2 − α2

)2)
(A.13)

A.7. Linearised boundary conditions in terms of the stream
function

Recall all of the below equations are evaluated at r = 1. The tangential stress balance is
transformed from

∂rw1 + ∂zu1 = S1

to
∂
∂rψ(r, t)

r2
−

∂2

∂r2
ψ(r, t)

r
− k2ψ(r, t)

r
= S1

using this expression for S in the kinematic equation, that reads

∂tS + iκw0(1)S = u1(1) =⇒ ∂tS + iκw0(1)S = iκψ(r = 1)

is transformed to

∂2

∂r∂tψ(r, t)

r2
−

∂3

∂r2∂t
ψ(r, t)

r
−
k2
(
∂
∂tψ(r, t)

)
r

+ikW

(
∂
∂rψ(r, t)

r2
−

∂2

∂r2
ψ(r, t)

r
− k2ψ(r, t)

r

)
− ikψ(r, t)

r

which is the required equation as presented in section 7.5. Now, using the normal stress balance
that in velocity-pressure variables reads

Bo p− 2Ca∂ru1 = −(D − κ2)S1

is first transformed to streamfunction-pressure variables to

Bo p+ 2iκCa(ψ(1)− ψ′(1)) = −(D − κ2)S1

to obtain an expression that only involves ψ we must solve for p in the Navier-Stokes equation
in the z direction

i

(
∂

∂r
ψ(r, t)

)
W (r)Rk r2 − iψ(r, t)

(
d

dr
W (r)

)
Rk r2 + k2

(
∂

∂r
ψ(r, t)

)
r2

+

(
∂2

∂r∂t
ψ(r, t)

)
Rr2 −

(
∂3

∂r3
ψ(r, t)

)
r2 +

(
∂2

∂r2
ψ(r, t)

)
r − ∂

∂r
ψ(r, t) = 0

(A.14)

with a simple substitution we will recover the equation as presented in section 7.5.
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A.8. Matrix for Stokes stability

The matrix M(Λ) is given by
. . . v⊺(α) . . .

. . . ∂v⊺

∂r (α) . . .

. . . v⊺(1)(−Λκ2 − w0(1)iκ
3 − iκ) + ∂v⊺

∂r (1)(Λ + iκw0(1)) +
∂2v⊺

∂r2
(1)(−Λ− iκw0(1)) . . .

. . . Boq⊺(1) + v⊺(1)(−2iκCa−Dκ2 + κ4) + ∂v⊺

∂r (1)(−2iκCa− κ2 +D) + ∂2v⊺

∂r2
(1)(κ2 −D) . . .


(A.15)

A.9. Chebyshev Spectral Method.

To discretise the linear system in section 7.5, the Chebyshev spectral method was used (49).
The unknown function is expanded as a (finite) Chebyshev series

ψ(r) =
N∑
j=0

µjTj(r) (A.16)

so that we are now interested in solving for the N + 1 unknowns {µj}j . Taking into account
that we have 4 boundary conditions for ψ, we evaluated the differential equation at N − 3
Gauss-Lobato points (46). Considering we can write the derivatives of a Chebyshev polynomial
in terms of other Chebyshev polynomials, this will give us a linear system of N + 1 linear
equations for the N + 1 unknowns. In practice, we first evaluate the Chebyshev polynomials
and their derivatives using the three term recurrence relation (49).

Tj+1(x) = 2xTj(x)− Tj−1(x) (A.17)

and this is directly substituted into the equations to build the matrix for the linear system.
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