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1 Introduction

Since the onset of COVID19 over two years ago disease transmission and epidemiology have gained much
relevance. In particular, focus has been placed on designing mathematical models which can accurately
predict the spread of disease both in space and time. These models have been especially important as many
public policy decisions have been influenced by their predictions. [13, 16]

However most systems are often presented from a computational perspective and epidemic spread patterns are
predicted using Monte-Carlo methods [9]. Thus, introducing concepts from nonlinear science to understand
these models from a more analytic or theoretical perspective could be of great interest.

This paper introduces the mathematics and dynamics of disease transmission, going over basic models in
section 2 such as the famous SIR equations, and a particular system is analysed with the lens of weakly
nonlinear theory. The complexity is gradually increased so that it can account for more spacial and temporal
factors. In section 3 we model spatial effects by introducing diffusion into the problem, and find an asymptotic
solution to a simplified case of the equations. Finally, we model transmission in nonhomogenous media by
introducing Network Science. Equations are derived to model the emergence of outbreaks on complex
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networks, and different approximations are studied, with a particular focus on how the spread depends on
the structure of the network.

In the context of nonlinear dynamics the most relevant sections are 2.3 where we present an application of
multi-timescale methods to an epidemiology problem, section 3.2 where techniques from perturbation theory
are used to obtain an asymptotic formula for the wavefront, and section 4 presenting epidemics on networks.

2 Basic compartmental models

To model epidemic outbreaks at a basic level we divide a population into several compartments, and model the
spread of the disease with interaction terms that ’connect’ the compartments. The number of compartments
will depend on the particular characteristics of a disease. There are four fundamental ways of doing this,
with varying levels of complexity, and none of them account for spatial effects. We name the different models
with the initials of the compartments they connect. [1]

1. SI model: we have two compartments: susceptible1 (S) and infected people (I). The transmission
from susceptible to infected is modeled with a ∼ SI term, giving rise to the following equations [23]

∂tS = −βSI ∂tI = βSI

Here β is a disease specific parameter that roughly models how infectious the pathogen is.

2. SIS model. Same compartments as SI model, but infected individuals can become susceptible after
infection. This is modelled with a ∼ γI term. The governing equations for SIS are [6]:

∂tS = −βSI + γI ∂tI = βSI − γI

3. SIR model. Three compartments: susceptible, infected and recovered individuals (R). Once recov-
ered/immune, an individual is always immune. This is generally the first model used to study an
outbreak (most pathogens fit into this model), and thus we will look at it in detail in section 2.1.

4. SIRS model. Same compartments as SIR but recovered individuals can loose immunity and become
susceptible. We will look at this system in section 2.2.

To model each system we will need an ODE for the size of each of the compartments. However all systems
are subject to a holonomic constraint: the total number of individuals in the system is conserved [1]. This
will reduce the dimensionality of the system by one degree of freedom.

This simplification makes the first two systems into one dimensional first order equations, which are separable
and fully integrable, so they are not of particular interest an analytical solution can be obtained[6].

However, SIR and SIRS will become two dimensional non linear systems of equations with no known analytic
solutions [6]. Hence, we will explore them in more detail in the upcoming sections to get acquainted with
the mathematics of epidemiology before moving on to spatial considerations.

For diseases were a vaccine is available the standard procedure is incorporating a ’vaccinated’ compartment
and vaccinate susceptible individuals in a linear way. Mathematically this will just shrink the susceptible
group. For more details on the role vaccination plays in compartmental models please see [11].

2.1 SIR model: an introduction to mathematical epidemiology

The SIR model is the most basic tool used to describe the spread of many diseases [10]. Whilst it has many
drawbacks (the lack of spatial dependencies being one of them) it captures many characteristics of real world

1Simply defined as individuals who can get infected, meaning they have not gained immunity from natural infection or
vaccination
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pathogens with a simple set of ordinary differential equations. Although they are non-linear and have no
analytic solution they are easy and cheap to integrate numerically [10]. As described previously, a population
with N members is divided into three disjoint compartments: S the susceptible individuals, I the infected
individuals and R the recovered individuals. The governing equations are [23]:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI (1)

As they are constrained by N = S + I + R = constant we can focus on the first two equations and ignore
the last one. We see they are first order equations and the nonlinearity comes from an interaction term of
the form SI. In particular, this means that I = 0, the null state, is a fixed point of the system for any value
of S and R, known in the literature as the disease free equilibrium. The initial conditions are usually of the
form

S(0) = N − I0 I(0) = I0 R(0) = 0

with I0 << N . We can nondimensionalise using t̃ = γt as the nonlinear time and S/N . . . as the nonlinear
population densities. This gives us (dropping the ∼) the following nondimensional system

St = −βN

γ
SI It =

βN

γ
SI − I

We can define R0 = βN
γ . This is the famous basic reproduction number. We can see why it is important by

linearizing the above around the fixed point (S, I) = (1, 0) (the disease free equilibrium)

St = −R0I It = R0I − I = (R0 − 1)I

This will have exponential growth when R0 > 1 and hence we see why the reproduction number is the crux
of the SIR model, as we can predict if there will be epidemic spread or not just by looking at single quantity.
Indeed, much of public health policy is aimed at driving this number down.

2.2 The SIRS model

The SIRS model is very similar to the aforementioned SIR, with a small change that has a significant effect
on the behaviour of the system. We incorporate a mechanism for individuals to migrate from the recovered
compartment to the susceptible compartment. Physically, this means that recovered patients will loose
immunity with time. How fast this happens is controlled by the parameter δ. The governing equations are
similar to those presented before [10]:

dS

dt
= −βSI + δR

dI

dt
= βSI − γI

dR

dt
= γI − δR (2)

However, this model has a surprise waiting for us: a fixed point with non-zero infections!. This is known in
epidemiology as the endemic equilibrium. This equilibrium is (again, as the system is constrained it suffices
to look at the first two equations) [10]

S∗ =
γ

β
=

1

σ
I∗ =

N − γ
β

1 + γ
δ

=
N − 1

σ

1 + q

where we have defined the contact number σ = β
γ and the ratio q = γ

δ . The careful reader might have noticed

that for this equilibrium to have physical significance we require all the components to be non-negative (as
they represent a number of individuals). Focusing on I∗ this means

N − γ

β
> 0 ⇐⇒ Nβ

γ
= R0 > 1
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with R0 the basic reproduction number as defined for the SIR model. This in turns means that the disease
free equilibrium (N, 0, 0) is unstable, which suggests a bifurcation happens at the critical value R0 = 1 where
the endemic equilibrium appears (and we expect it to be stable) and the disease free equilibrium becomes
unstable as the reproduction number is increased.

Indeed we can verify that the requirement for linear stability of the endemic equilibrium is R0 > 1 [1], which
is the same as the requirement for the existence of the fixed point. Therefore the endemic equilibrium is
always stable. A bifurcation diagram is available in Figure 1b. This stability suggests there might be an
oscillatory solution around this equilibrium that eventually converges, and that we might be able to apply
weakly nonlinear techniques. Indeed, direct simulation confirms this, as evident in Figure 1a

(a) Oscillatory behaviour around the endemic equilib-
rium for an SIRS system.

(b) Bifurcation plot for the SIRS system, focusing on the
infectious fixed points. Note the (pitchfork) bifurcation
at R0 = 1. We represent stability with solid lines and
instability with dashed lines.

Figure 1: Visualisations for the SIRS system

2.3 Weakly nonlinear analysis of SIRS

This sections assumes that N = 1. This is equivalent to working with population densities. We will also
require that σ = β

γ > 1, so that the endemic equilibrium exists and is stable. We can see from the linearization
that the system is close to a damped harmonic oscillator. We can write the equations for small perturbations
from the endemic equilibrium as

S = S∗ + εx I = I∗ + εy R = R∗ + εz

with ε a small parameter. Upon substitution to the governing equation (2) we get,

dx

dt
= −εσxy +

z

q

dy

dt
=

σ − 1

q + 1
x+ εσxy

dz

dt
= y − z

q
(3)

as S + I +R = 1 we have that the perturbation variables are constrained by x+ y + z = 0 and it suffices to
study the last two equations, and noting that x = −y − z we reduce the above to

dy

dt
= −(y + z)

(
σ − 1

q + 1
+ εσy

)
dz

dt
= y − z

q

We will write this system as a nonlinear harmonic oscillator for z. From the second equation above we can
take a derivative

y =
dz

dt
+

z

q
=⇒ dy

dt
=

d2z

dt2
+

1

q

dz

dt
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So equating this with the second equation in (3)

d2z

dt2
+

1

q

dz

dt
=

dy

dt
= −(y + z)

(
σ − 1

q + 1
+ εσy

)
Substituting the expression for y we get an equation that only involves z and its derivatives.

d2z

dt2
+

1

q

dz

dt
=

dy

dt
= −

(
dz

dt
+

z

q
+ z

)(
σ − 1

q + 1
+ εσ

(
dz

dt
+

z

q

))
after some algebra, we can group the above to

d2z

dt2
+

(
σ − 1

q + 1
+

1

q

)
dz

dt
+

σ − 1

q
z = −εσ

((
dz

dt

)2

+ z
dz

dt

q + 2

q
+ z2

q + 1

q2

)
(4)

this is indeed a nonlinear harmonic oscillator, and we can apply ideas from weakly nonlinear analysis. We
will define the following quantities, which will be helpful for our analysis

ω2 =
σ − 1

q
G =

qσ − 1

q(q + 1)
k =

q + 2

q
δ = εσ

So we can write the system as

d2z

dt2
+G

dz

dt
+ ω2z = −δ

((
dz

dt

)2

+ z
dz

dt
k + z2

q + 1

q2

)
(5)

We can non-dimensionalize using t = ωt̄ (z is a relative value so it is non-dimensional), and dropping ”-”

d2z

dt2
+G/ω

dz

dt
+ z = −δ

((
dz

dt

)2

+
k

ω
z
dz

dt
+

q + 1

ω2q2
z2

)
(6)

For convenience we will discard the ∼ z2 term as with the parameter values we use in practice it will be
small (it is roughly ∼ 1

σ−1 when compared to the first nonlinearity). We hope to revisit this assumption

in the future. We can also define B = G/ω and κ = k
ω . We can find the characteristic time for the other

nonlinearities and the linear damping using a naive expansion. Note that as the nonlinearities are quadratic
we have to go O(δ2) to find these times. We find that

1. Characteristic time for damping is ∼ 1
B

2. Characteristic time for ż2 nonlinearity is ∼ 1
δ2

3. Characteristic time for żz nonlinearity is ∼ 1
(κδ)2

Now, recall that σ > 1 and we will choose q > 1. Therefore we require q ∼ σ − 1 for the characteristic time
of the first two nonlinearities to be similar, so we will assume it. Lastly, to equate the characteristic time of
the damping with the characteristic time of the nonlinearities we require that B ∼ δ2t (which we can control
with ε). Hence with this in mind we define the slow time T = δ2 and µ = B

δ2 , and the reduced system is
without ∼ z2 will be

d2z

dt2
+ µδ2

dz

dt
+ z = −δ

((
dz

dt

)2

+ z
dz

dt
κ

)
We will find a multi-timescale series expansion solution of the form

z = θ0(t, T ) + δθ1(t, T ) + δ2θ2(t, T ) + . . .
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For O(1) we obtain a standard harmonic oscillator so θ0 = {A(T )eit + cc}. For the first order term O(δ) we
have the following system

∂2θ1
∂t2

+ θ1 +

(
∂θ0
∂t

)2

+ κθ0
∂θ0
∂t

= 0

We can substitute ∂tθ0 = {iA(T )eit + cc} resulting in(
∂θ0
∂t

)2

= {−A2e2it +AA∗ + cc} κθ0
∂θ0
∂t

= κ{iA2e2it}

∂2θ1
∂t2

+ θ1 = −{−A2e2it +AA∗ + cc} − κ{iA2e2it}

So we can solve for θ1 using several ansatzs: θ1(t, T ) = {αe2it + C(T )eit + cc}+ β with

α =
A2

3
(κi− 1) + cc β = −AA∗ = −2AA∗ ∈ R

Now we can go to O(δ2), where we will finally be able to derive an evolution equation for A(T ). The
equations are

∂2θ2
∂t2

+ θ2 + 2
∂2θ0
∂t∂T

+ 2
∂θ0
∂t

∂θ1
∂t

+ µ
∂θ0
∂t

+ κθ1
∂θ0
∂t

+ κθ0
∂θ1
∂t

= 0

We know analyse each term

2
∂2θ0
∂t∂T

= {2i∂A
∂T

eit + cc} µ
∂θ0
∂t

= {µiAeit + cc}

2
∂θ0
∂t

∂θ1
∂t

= {4αA∗eit + cc}+NRT

κθ1
∂θ0
∂t

= {(−iακA∗ + iβκA)eit + cc}+NRT

κθ0
∂θ1
∂t

= {2iκαA∗eiat + cc}+NRT

Cancelling the resonant terms (∼ eit) gives us the desired evolution equation

2i
∂A

∂T
+ µiA+ 4αA∗ − iακA∗ + iβκA+ 2iκαA∗ = 0

inserting the values for α and β gives us the following equation for the envelope

dA

dT
= −µ

2
A−

(
iκ2

6
+

2i

3
− κ

2

)
A2A∗ (7)

And hence we have applied concepts from weakly nonlinear analysis to mathematical epidemiology. To
obtain equations we can simulate numerically we have to write A = reiϕ. When ϕ(0) = 0 we will see that
the correction to the phase will depend on r20.
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3 Incorporating spatial dependence: a diffusive SIR model

In this section we will explore how an epidemic spread in space, with a particular emphasis on how travelling
epidemic ”waves” might appear. To introduce space into the problem, we will start from the same equations
as before (1 and 2), but now we will assume the infected individuals can travel in space. The resulting model
will account for the epidemic spread in time as well as in space with a diffusive-like term.

Instead of working with the total number of individuals N,S, I,R, . . . we will work with a density i(x, t) =
I(x, t)/N, . . . as in previous sections. As for our modelling assumptions, we require that the total population
density n(x) is constant in space and time. We will model individuals travelling with a contact distribution
or kernel k(x) satisfying

k(−x) = k(x)

∫ ∞

−∞
k(x)dx = 1 and k(x) ≥ 0

The interpretation for this operator is that k(y − x) is the share of infected individuals at position y which
come into contact with susceptibles at position x. Mathematically, the contact kernel is just a symmetric
probability density function. Hence, the spatial SIRS model will have the following governing equations
[10, 1]

∂s

∂t
= −β

∫
k(x−y)i(y, t)dy+δr·s(x, t) ∂i

∂t
= β

∫
k(x−y)i(y, t)dy·s(x, t)−γi(x, t)

∂r

∂t
= γi(x, t)+δr (8)

With the integrals over R. To get the equations in a more tractable form we can perform the following
Taylor expansion [22]

i(x− y, t) = i(x, t)− yix(x, t) +
1

2
y2ixx(x, t) + . . .

then [1]∫
k(x− y)i(y, t)dy =

∫
k(y)i(x− y, t)dt ≈

∫ {
k(y)i(x, t)dy − yk(y)ix(x, t) + y2/2k(y)ixx(x, t)

}
dy

In the first integral, we get i(x, t) as the contact kernel is normalized. The second one turns out to be
identically zero as the contact kernel is symmetric [6]. Finally, we define

D = β/2

∫
k(y)y2dy

so that the equations in 8 simplify to [10]

∂ts = −(βi+Dixx)s+ δr it = (βi+Dixx)s− γi rt = γi− δr

As in the simpler cases studied previously, we can reduce the above system to 2 dimensions by noting that
s+ i+ r = 1 so that the first equation can be discarded and

it = (βi+Dixx)(1− i− r)− γi rt = γi− δr (9)

In particular, for a finite domain we can linearize the system and perform separation of variables to find that
the effective reproduction number is the same as for the SIR system describe in section 2.1, R0 = Nβ

γ , so
that when the population density is uniformly distributed on the domain spatial effects and diffusion have no
effect on epidemic spread [11, 23]. However this is not consistent with experimental data, thus motivating the
modelling of epidemics using complex networks as presented in section 4. However, before moving directly
to that type of modelling it is interesting to discuss the existence of travelling wave solutions in systems like
9.
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3.1 Travelling Waves in epidemic models

In this section we will discuss the existence of travelling wave solutions for the diffusive SIS system. Although
the existence of travelling waves on the more complicated SIRS system is of greater interest, due to time and
space constraints we will discuss a reduced SIS system here (with no recovered compartment). A brief sketch
of the SIRS travelling wave problem will be given at the end of section. For more details please refer to
Lin et. al. [10, 6, 1]. The governing equations for the diffusive SIS model are simpler than those previously
derived for the SIRS:

∂ts = −(βi+Dixx)s+ γi it = (βi+Dixx)s− γi (10)

Subject to the constraint that 1 = i+ s, we reduce the system to a single PDE:

it = (βi+Dixx)(1− i)− γi (11)

We will assume that there is initial epidemic growth, meaning β > γ. The system can be simplified by
dropping the i∂2

xi term, which gives us a slightly simpler system

it −Dixx = βi(1− i)− γi (12)

This is the Fisher-KPP (Kolmogorov, Petrovsky and Piskunov) equation [15], which is well studied. We can
non-dimensionalize via

u =
γ

β
i x′ =

√
β/Dx t′ = βt

The non-dimensional equation will be
∂tu− ∂2

xxu = u(1− u) (13)

However, for the time being we will stick with the dimensional equation, and we will return to this when
studying the asymptotic solution in the next section. For the time being we seek a travelling wave solution
of the form i(x, t) = f(ξ) with ξ = x− ct. Upon substitution we get the following differential equation [5]

Df ′′ + cf ′ + βf(1− f)− γf = 0

It is best to think of this equation as the two dimensional ODE system{
f ′ = g

g′ = 1
D [−cf ′ − βf(1− f) + γf ]

(14)

This system has two fixed points, one corresponding to the disease free equilibrium (0, 0) and the other
corresponding to the endemic equilibrium (β−γ

β , 0). The linearization around the disease free equilibrium
has Jacobian matrix

J(0, 0) =

(
0 1

γ−β
D − c

D

)
this has eigenvalues

λ0
± =

−c±
√

c2 − 4D(β − γ)

2D

we can see that for this to have real roots (and be a stable node) we require c ≥ cmin = 2
√
D(β − γ). The

reason why we impose the real roots requirement is that we have a physical requirement that f > 0 and a
complex solution would allow for oscillations, which would mean f takes on negative values. As f represents
a density of infected people it cannot be negative [10]. Turning our attention to the endemic equilibrium
(β−γ

β , 0), it will have Jacobian matrix

J

(
β − γ

β
, 0

)
=

(
0 1

β−γ
D − c

D

)
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with eigenvalues

λ1
± =

−c±
√

c2 + 4D(β − γ)

2D

So we verify the endemic equilibrium is a saddle point. Thence, there exists a separatrix joining the endemic
equilibrium with the disease free equilibrium when c ≥ cmin, see Figure 2 [15]. This separatrix will be a
trajectory in the phase space which lies entirely in the f > 0, g < 0 quadrant. Hence we have determined
that there exists a minimum wave speed for epidemic front [5].

Figure 2: Phase space trajectories for c ≥ cmin. Note the separatrix joining the two fixed points

For the more complicated SIRS system Li et. al. [10] suggested a similar approach but made use of the Hopf
Bifurcation theorem to establish the result. The details of this are beyond the scope of this paper, but a
detailed analysis is available in any of [1, 6, 23]

3.2 Asymptotic solution of the epidemic front

We now return to the non-dimensional Fisher-KPP equation [15]

∂tu− ∂2
xxu = u(1− u)

Proceeding as before, we can try a traveling wave solution of the form u(x, t) = f(x− ct), which gives us the
same ODE as before but in non-dimensional form:

f ′′ + cf ′ + f(1− f) = 0

The analysis in the previous section indicates that the minimum wave speed will be c = 2. Hence, motivated
by this we can define a small parameter ε = 1

c2 ≤ 0.25. We can then try an asymptotic solution using the
following change of variables [7]

f(ξ) = h(η) η =
√
εξ

Then the equations get mapped to [7]

ε
d2h

dη2
+

dh

dη
+ h(1− h) = 0

We will require that the center of the front is located at ξ = 0. This means that h(0) = 1
2 , and we require

that h decays to zero at positive infinity. We will seek a series solution of the form

h(η) = h0 + εh1 + . . .
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The zeroth order equation will be

O(1) =⇒ dh0

dη
= −h0(1− h0)

We can solve this equation with the boundary condition h0(0) = 0.5 with [7]

h0(η) =
1

1 + eη

Moving up to first order we get

O(ε) =⇒ dh1

dη
+ h1(1− 2h0) = −d2h0

dη2

Subject to h1(0) = 0. The solution to this problem is [7]

h1(η) =
eη

(1 + eη)2
log

[
4eη

(1 + eη)2

]
assembling the series solution we obtain h(η)

h(η) =
1

1 + eη
+ ε

eη

(1 + eη)2
log

[
4eη

(1 + eη)2

]
now we can undo the transformation to obtain the shape of the wavefront: ξ = ε1/2η and ε = 1/c2 giving us

f(ξ) =
1

1 + eξ/c
+

1

c2
eξ/c

(1 + eξ/c)2
log

[
4eξ/c

(1 + eξ/c)2

]
In Figure 3 we compare this asymptotic solution to the a solution obtained by numerically solving the
boundary value problem. The asymptotic solution is extremely accurate, even for small values of c ∼ 2.

Figure 3: Comparison between the numerical solution and the asymptotic solution for c = 2. Numerically,
the relative error stays below 1% in the entire domain.

4 Epidemics on networks

In the previous section we explored the role of spatial dependence has in epidemic spread. However, we
did this under the strong underlying assumptions that the spread was isotropic, i.e. equal in all directions.
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However, diseases are transmitted via human networks, which are complex and not isotropic. For this reason,
it is reasonable to introduce networks to the study of epidemics. The ultimate aim for this section is to find
expressions of the R0 basic reproduction number that depend on the structure of the network. This is useful
because it can help predict epidemic spread accurately if we have information about the social network where
it is spreading. Instead of diving directly into epidemics it is a good idea to spend some time describing
networks themselves, and the mathematical tools we use to describe them.

4.1 A brief introduction to network science

A network is essentially a collection of N nodes and L edges between them. In the simplest case, when a
network is undirected (meaning nodes are connected symmetrically by an edge, ie. information can travel
both ways) and unweighted (meaning every edge is as important as any other edge) we can compress all the
information about a graph on the adjacency matrix A ∈ RN×N , defined by [2]

Aij =

{
1 if there is a link between nodes i, j

0 otherwise

Using this, we can define the degree of node i by [12]

ki = number of neighbors of node i =
∑
j

Aij =
∑
i

Aij

4.2 Epidemics on networks: an example of nonlinear dynamics on a system
with many degrees of freedom

Now we have defined all the necessary tools, and we can start to think how an epidemic would spread on a
graph were each person is a node and we place an edge between two people if for example they have been
in close proximity in the last 7 days (or some other rule). We can simulate an epidemic that starts from a
single node by drawing random numbers for each of its neighbors and choosing if they get infected if say the
number is greater than β. Then we repeat the process with the newly infectious nodes and iterate with each
time step [9]. This is a Monte-Carlo like method that only returns a single realization of how an epidemic
spreads on a particular graph. We are far more interested in how an epidemic spreads on average, which
means we would need to repeat this procedure many times.

However, we can also obtain the average behaviour theoretically! To this end we define xi(t), the event that
node i is infected at time t. This models a Bernoulli random variable, meaning that the expectation is the
same as the probability that the random variable is one, so we can claim ⟨xi(t)⟩ = Pr(xi(t) = 1). Hence the
objective is to find a governing equation for ⟨xi(t)⟩. If we assume there is no recovery (so an SI system),
then a node stays infected forever once it is infected. So a node will be infected at time t+∆t if either

1. It was already infected at time t

2. It got infected from one of its neighbours between t and t+∆t

We can write this mathematically by saying [8]

Pr(xi(t+∆t) = 1) = Pr(xi(t) = 1) + πi(t,∆t)

where πi(t,∆t) is the probability that node i is infected by a neighbor between times t and t+∆t. For this
to happen, we require xi(t) = 0, xj(t) = 1 and Aij = 1 so that i and j are neighbors. If all those conditions
are met, then we can model that probability as in the direct simulation case and assign it a probability of
transmission of β∆t. Hence, when we account for all the neighbors of i, we can get an expression for πi [19]

πi(t,∆t) = β∆t

N∑
j=1

Aij Pr(xi(t) = 0, xj(t) = 1) +O(∆t2)

11



where Pr(xi(t) = 0, xj(t) = 1) is the joint probability that xi(t) = 0 and xj(t) = 1. Then

Pr(xi(t+∆t) = 1) = Pr(xi(t) = 1) + β∆t

N∑
j=1

Aij Pr(xi(t) = 0, xj(t) = 1) +O(∆t2)

As discussed above, we can take expectations so that

⟨xi(t+∆)⟩ = ⟨xi(t)⟩+ β∆t

N∑
j=1

Aij⟨(1− xi(t))xj(t)⟩+O(∆t2)

now, dividing by ∆t and taking the limit ∆t << 1, we get a system of N non linear ODEs:

d⟨xi⟩
dt

= β

N∑
j=1

Aij⟨(1− xi(t))xj(t)⟩ (15)

However (and tragically) the product of expectations in the summation means this can not be solved in this
form, so we will need a simplifying assumption. On another note, using the same steps outlined here we
can obtain equations for the network SIR model, where we allow recovery and si is the event that node i is
susceptible [9, 8]

d⟨si⟩
dt

= −β

N∑
j=1

Aij⟨si(t)xj(t)⟩ and
d⟨xi⟩
dt

= β

N∑
j=1

Aij⟨si(t)xj(t)⟩ − γ⟨xi(t)⟩ (16)

4.3 Naive approximation

To get an equation in a form we can solve/simulate, as a starting model we can assume

⟨xj(1− xi)⟩ = ⟨xj⟩⟨1− xi⟩

This is known as the Naive approximation [8]. Under this assumption, we have in the case of the SI system

d⟨xi⟩
dt

= β⟨1− xi(t)⟩
N∑
j=1

Aij⟨xj(t)⟩

and in the case of the SIR system:

d⟨si⟩
dt

= −β⟨si(t)⟩
N∑
j=1

Aij⟨xj(t)⟩ and
d⟨xi⟩
dt

= β⟨si(t)⟩
N∑
j=1

Aij⟨xj(t)⟩ − γ⟨xi⟩

The above equations can be integrated numerically (and the animation that comes with my report is from
this equations), and furthermore we can linearize around the disease free equilibrium (⟨si⟩ = 1 and ⟨xi⟩ = 0)
obtaining linear system

d⟨si⟩
dt

= −β

N∑
j=1

Aij⟨xj(t)⟩ and
d⟨xi⟩
dt

= β

N∑
j=1

Aij⟨xj(t)⟩ − γ⟨xi⟩

The second equation can be expressed in vector form using the adjacency matrix

d⟨x⟩
dt

= βA⟨x⟩ − γ⟨x⟩ = (A− γI)⟨x⟩

where I is the identity matrix. The system will be dominated by the largest eigenvalue of the matrix A−γI,
which we know will be real because of the spectral theorem (recall A is symmetric), and hence the epidemic
will grow as ∼ exp (λ1 − γ)t, where λ1 is the largest eigenvalue of A. Thus we have found an effective
reproduction number λ1 − γ that will depend on the structure of the network.
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4.4 Degree based analysis

Another approach to getting analytic is result is to assume that nodes of similar degrees will have the same
probability of being infected [20]. Mathematically, this means that

ki = kj =⇒ ⟨xi⟩ = ⟨xj⟩

So let ϕk indicate if the nodes of degree k are infected. Using a similar analysis as for the average infection,
for any time t, we will have that Pr(ϕk(t+∆t) = 1) if Pr(ϕk(t) = 1) or if the nodes of degree k get infected
from a neighbor between t and t + ∆t. Denote this transmission event as B. Let Pr(θ(k, k′) = 1) be the
probability that a node of degree k has a neighbour of degree k′. Then we can model Pr(B) with [20]

Pr(B) = kβ∆t

kmax∑
k′=1

Pr(θ(k, k′) = 1, ϕk(t) = 0, ϕk′(t) = 1)

This can be simplified using conditional probabilities

Pr(θ(k, k′) = 1, ϕk(t) = 0, ϕk′(t) = 1) =

= Pr(ϕk′(t) = 1|θ(k, k′) = 1, ϕk(t) = 0)Pr(θ(k, k′) = 1|ϕk(t) = 0)Pr(ϕk(t) = 0)

And furthermore by independence [20] (the details of this are not important)

Pr(θ(k, k′) = 1|ϕk(t) = 0) = Pr(θ(k, k′) = 1)

Pr(ϕk′(t) = 1|θ(k, k′) = 1, ϕk(t) = 0) = Pr(ϕk′−1 = 1)

Hence we have factorised the probability in the following way:

Pr(θ(k, k′) = 1, ϕk(t) = 0, ϕk′(t) = 1) = Pr(ϕk′ − 1 = 1)Pr(θ(k, k′) = 1)Pr(ϕk(t) = 0)

Putting everything back together and switching from probabilities to expectations (which we can do since
we are working with Bernouilli variables), and taking the limit as ∆t → 0+

d⟨ϕk⟩
dt

= kβ(1− ⟨ϕk⟩)
km∑
k′=1

⟨θ(k, k′)⟩⟨ϕk′−1⟩

To get the equations in a form we can solve we need some information on θ(k, k′). For this, suppose we have
the degree distribution of the network. This means that for each degree k we know pk, the share of nodes

with degree k. Then ⟨θ(k, k′)⟩ = k′pk′

k̄
[2] Hence, the governing equation is [12]

d⟨ϕk⟩
dt

= kβ(1− ⟨ϕk⟩)
km∑
k′=1

k′pk′

k̄
⟨ϕk′−1⟩ (17)

To get an effective reproduction number we linearize around the disease free equilibrium ⟨ϕk⟩ << 1,

d⟨ϕk⟩
dt

= kβ

km∑
k′=1

k′pk′

k̄
⟨ϕk′−1⟩

We can simplify this by defining

Θ =

km∑
k′=1

k′pk′

k̄
⟨ϕk′−1⟩ =⇒ d⟨ϕk⟩

dt
= kβΘ
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and furthermore, taking the derivative of Θ and using the original equation we get

dΘ

dt
= βΘ

km∑
k′=1

k′pk′

k̄
(k′ − 1)

But the sum turns out to be [2]

km∑
k′=1

k′pk′

k̄
(k′ − 1) =

1

k̄

km∑
k′=1

[k′2pk′ − k′] =
k̄2

k̄
− 1

So the epidemic growth depends on the variance of the degree distribution! Furthermore, we can solve those
linear equations, to recover

Θ(t) = Θ0 exp(t/τ) =⇒ ⟨ϕk(t)⟩ =
kβΘ0

τ
(exp(t/τ)− 1) + ⟨ϕk(0)⟩ (18)

where the characteristic spread time τ is 1
τ = β

(
k̄2

k̄
− 1
)
. The dependence of the initial growth (and the

reproduction number) on the variance of the degree distribution is a remarkable result. It is a convenient
way to estimate ”how bad” an outbreak will be quickly and cheaply, and it sheds light into the role network
structure plays in epidemic spread. In particular, this results predicts that networks that have a wide range
of degrees will have faster spread.

4.5 Pair approximation

The naive approximation relies on the assumption that we can factorise the expectation in the governing
equations. This will be a terrible assumption for most real networks [2, 12]. A possible idea is to derive
another evolution equation for ⟨(1−xi)xj⟩ (or equivalently ⟨xixj⟩) in much the same way we did for ⟨xi⟩. We
only need to do this when nodes i and j are neighbours, so this incorporates L unknowns into our system,
where L is the number of edges. This approach is known as the pair approximation[17]. So we need to
compute Pr(xi(t+∆t) = 1, xj(t+∆t) = 1). Focusing again on the SI model, we can use the same reasoning
as for the first master equation, by noting that

Pr(xi(t+∆t) = 1, xj(t+∆t) = 1) = Pr(xi(t) = 1, xj(t) = 1) + Pr(xi(t) = 1, xj → 1)+

+Pr(xi → 1, xj(t) = 1) + Pr(xi → 1, xj → 1)

Where the notation xi → 1 means that node i gets infected between time t and t + ∆t. The first term in
the sum will get absorbed into the derivative in the limit for ∆t small, and the final term will be of order
O((∆t)2), so it will also disappear in the limit. Hence we have to focus in the middle terms. Using the same
reasoning as previously, we can write them as [14]

Pr(xi(t) = 1, xj → 1) = β∆t

N∑
l=1

Ajl Pr(xi(t) = 1, xj(t) = 0, xl(t) = 1)

and similarly for the other term

Pr(xi → 1, xj(t) = 1) = β∆t

N∑
l=1

Ail Pr(xi(t) = 0, xj(t) = 1, xl(t) = 1)

so putting everything back together we obtain (recall si = 1− xi)

d⟨xixj⟩
dt

= β

N∑
l=1

[Ajl⟨xisjxl⟩+Ail⟨sixjxl⟩] =⇒
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d⟨sixj⟩
dt

=
d⟨(1− xi)xj⟩

dt
= β

N∑
l=1

Ajl⟨sjxl⟩−β

N∑
l=1

[Ajl⟨xisjxl⟩+Ail⟨sixjxl⟩] = β

N∑
l=1

[Ajl⟨sisjxl⟩+Ail⟨sixjxl⟩]

Our next step to obtaining tractable equations is to approximate ⟨sisjxl⟩ and the other similar term: [17]

⟨sisjxl⟩ ≈
⟨xlsj⟩⟨sisj⟩

⟨sj⟩
and ⟨sixjxl⟩ ≈

⟨sixl⟩⟨sixj⟩
⟨xj⟩

Thus have derived a closed system of N + L ODEs which we can simulate:

d⟨xi⟩
dt

= β

N∑
j=1

⟨sixj⟩ and
d⟨sixj⟩

dt
= β

N∑
l=1

[
Ajl

⟨xlsj⟩⟨sisj⟩
⟨sj⟩

+Ail
⟨sixl⟩⟨sixj⟩

⟨xj⟩

]
This is known as the pair approximation, and it is in fact a state of the art model for the epidemic spread
on networks. [17, 18]

4.6 Comparison of approximation and numerical results

Three different approximations to the governing equation have been derived. The first and third are of
similar nature, where we approximate the nonlinear terms. The naive approximation will work well when
the nodes of the graph are uncorrelated, as that is when the expectation can be factored. This is true for
graphs that look like trees. We say these networks low high clustering or transitivity, and clustering is just
a measure of the number of triangles on a graph. However most real social networks have high clustering
[2, 21], rendering the naive approximation ineffective. Indeed, Newman [12] compared both the naive and
the pair approximation on networks with different transitivity, as shown in Figure 4, clearly showing how
superior the pair approximation (denoted as second order) is to the naive approximation (first order) when
used on graphs with high clustering.

Figure 4: From Newman (2018) [12]. Comparison of the pair approximation (second order) and the naive
approximation (first order) with simulations using Monte-Carlo. We observe the naive approximation dra-
matically fails for networks with high clustering. Here the abundance of triangles means nodes are not
independent from their neighbor’s neighbors
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Turning our attention to the degree-based approximation, it has clear shortcomings when applied to graphs
where there is a significant fraction of nodes with high degree, and they might be dispersed in opposite corners
of the domain. This means that even though one node of high degree might be infected, the remaining ones
are physically far away and thus have very low probability of being infected, and the degree assumption fails
completely. However this approximation, provides us with a useful metric to measure initial epidemic spread,
the variance of the degree distribution (which we often know). Thus it can be useful as a first estimate but
public health decisions should not be made just from the degree based approximation.

5 Conclusions, future work and final remarks

All in all we explored the mathematics of epidemiology gradually increasing the role space has on the disease
spread. Along the way, we successfully implemented techniques from weakly nonlinear analysis to the SIRS
epidemic model, obtaining the envelope equations for the oscillations around the endemic state. Furthermore,
in the case of uniform spatial dependence the conditions for the existence of travelling wave solutions for the
SI system were derived, alongside a successful asymptotic expression for the wavefront.

Network Science was introduced with the aim of modelling the spread of disease on complex and nonhomoge-
neous media, such as human social networks. The governing equations for the average infection were derived,
but they are intractable, so several alternative approximations were offered to obtain tractable equations,
culminating in a state of the art model, the pair approximation [17]. Through these approximations we were
able to obtain effective reproductive numbers that dependend on the structure of the network.

In the future it would be interesting to study if contact terms of the form SI2 or S2I are a good fit with
experimetnal data, instead of the SI term standard models use. This would be beneficial for the weakly
nonlinear analysis, as the nonlinearity would be cubic instead of quadratic, and O(δ) would be sufficient
for the analysis, potentially simplifying the algebra required for the problem. On the topic of the weakly
nonlinear analysis, it would be interesting to perform the analysis with the ∼ z2 term as well to better
capture the physics of the problem.

Moreover, further study into the existence and properties of travelling waves in the more complicated SIRS
system would also be appropiate, continuing the work started by Li et. al. [10] and others [1, 6]

As for the network models, gaining a more theoretical understanding of the systems of equations that arise
would be beneficial, as due to the large numbers of degrees of freedom they are often simulated numerically.
In particular, large real networks often exhibit community structure, and comprehending how this affects
epidemic growth is crucial if we are to use these models to establish public policy, exploiting the role
communities plays in the spread when implementing lockdowns or even vaccination roll outs. Another
possible avenue of study is incorporating stochastic methods, such as random walks to predict the spread,
as in [4, 3]
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