
EDGE BETWEENNESS CENTRALITY AND ITS APPLICATIONS
TO COMMUNITY DETECTION IN LARGE NETWORKS

JAVIER CHICO VÁZQUEZ ∗

Abstract. This paper presents a review of the centrality algorithm, and its to community detec-
tion on networks. The algorithm is then tested on graphs generated by the stochastic block model,
and compared to other competing procedures for graph partitioning. Some speed up procedures are
proposed.

Key words. Network Science, Numerical Methods, Centrality, Community detection

AMS subject classifications. 05C82, 91D30

1. Introduction. In this paper we will introduce and review the Centrality
Algorithm with a special focus on its applications to Community detection in networks
as discussed by Girvan and Newman [10]. The intuitive idea behind this algorithm is
to find the most relevant nodes or edges in a network.

The concept of community detection is intuitive, and for graphs small enough to
be visualized we could even split them into communities in a fairly accurate manner
just by inspection. An example of this is Figure 1, where we can find the communities
just by looking at the edge density in different regions of the network. Unfortunately
translating this intuition into mathematics is no trivial task.

Fig. 1. A network with two communities

The benefits of having a fast and accurate community detection procedure are
self evident, for a vast array of 21st century applications will benefit from it [14, 4].
Community detection is commonly used to study and analyze biological, social and
electrical networks [10]. It plays an essential role in understanding the spread of on
networks, for example power grid failures and blackouts [1]. These networks are often
large, and thus a fast algorithm is required for a detailed analysis.

Moving on to the centrality algorithm, it has both a node and an edge version.
We will focus on the edge algorithm, as it has a more direct application to community
detection. The qualitative reasoning behind this is that if we are given an oracle (or
black box) that can find the most ”important” link in a graph, we can remove that
edge, and repeat the process until the graph is disconnected, hence splitting the graph
in a meaningful way. [10]

∗Department of Mathematics, Massachusetts Institute of Technology/Imperial College London
(jchico@mit.edu).

1

mailto:jchico@mit.edu

2 J. CHICO VÁZQUEZ

Before going into the specifics of centrality it is important to note that it might
be tempting to state that important nodes will have high degree (a large number of
neighbors) and dismiss this problem as trivial. However there is a bounty of real
networks that contradict this claim. Perhaps the best example is the network of
internet cables that connect the world’s routers: a node connected to one of the ∼ 30
underwater internet cables that crosses the Atlantic might not necessarily have many
neighbors, but a lot of ”information” will flow through it. The idea behind centrality
is to capture that importance which might not necessarily be accurately portrayed by
a node’s degree. However, this is not the only way to find communities in a graph.
With this in mind, two competing community detection algorithms will be presented
as alternatives: modularity maximization and Laplacian graph partitioning.

Several variants of the centrality algorithm have been presented in the decades
since it was first introduced [3], as well as a generalization to weighted networks. We
will comment on some of them at the end of the review, paying particular interested
to those with stochastic components like [16].

This paper is organized as follows. Essential network science concepts are re-
vised in section 2. The main algorithm is explained and implemented in section 3.
The algorithm’s community finding ability is tested in section 4. A discussion of a
competing algorithms is given in section 5 followed by a brief conclusion in section 6.

2. Network Science Preliminaries. Suppose we have a network with N nodes
and L edges (links between the nodes), for example in Figure 1. The following are
standard definitions - available for instance in [1, 14] - used to describe a network in
the language of linear algebra.

Definition 2.1 (Adjacency Matrix). We define the adjacency matrix Aij of a
graph which for the time being we assume to be unweighted (all edges are equally
important) and undirected (all edges can be travelled in both directions) in the following
way: [1].

Aij =

{
1 there is a link between nodes i, j

0 otherwise

Definition 2.2 (Degree of a node). For a node i, we define the degree of node
i denoted as ki by the number of neighbors it has. For an unweighted and undirected
network we can express this in terms of the adjacency matrix as

ki =

N∑
j=1

Aij

We further define the degree matrix, D = diag(k1, . . . , kN) where ki is the degree of
node i. Finally, we can use this definition to obtain the Laplacian matrix:

L = D −A

This is an N ×N matrix, where the diagonal entries will be ki (the number of neigh-
bours node i has), and the off-diagonal entries will be −1 if there is a link between
node i and j, and zero otherwise. [1]

Definition 2.3 (Connected Network). A graph is connected if and only if there
exists a path joining any two nodes in the graph [14].

EDGE BETWEENNESS CENTRALITY 3

3. Edge Betweenness Centrality. As discussed in the introduction, the main
idea behind centrality is to find the most important ”connectors” in a graph. We
can make this more precise by describing important edges as those by which many
shortest paths joining other edges go through. As previously explained these nodes
might sometimes have a low degree, so finding it just by looking at high degree nodes
is not acceptable. For this, we turn to betweenness centrality (BC). We define the edge
betweenness centrality of an edge that connects two nodes α and β as [12, 14, 1, 10]

(3.1) yαβ =

N∑
a=1

N∑
b=1

mαβ(a, b)

pab

wheremαβ(a, b) is the number of shortest paths between nodes a and b that go through
the edge (α, β), and pab is the total number of shortest paths between nodes a and b.
Hence, we are effectively counting the fraction of shortest paths between two nodes
that go through a particular link, and then summing over all possible pairs of nodes.

Once we have made the definition precise, we can think about how to compute it.
The straightforward way would be by considering every possible pair of nodes (there
are

(
n
2

)
possible pairs of nodes), and computing every single shortest path between

them. Then we focus on each of the L edges and for each pair of nodes compute
the share of shortest paths that go through that particular edge. This is conceptually
simple, but inefficient and expensive [14]. Fortunately, there are efficient algorithms to
accelerate the computation of betweenness centrality, as discussed in subsection 3.2.
However we will first go over how to apply centrality to detect communities.

3.1. Edge Betweenness Centrality as a Community detector. As out-
lined in the introduction, we can detect communities by successively removing nodes
edges with high centrality. Once the edge betweenness centrality has been computed
for every edge, the network can be divided by removing the edge with the highest
betweenness centrality [10]. If the new network is still connected, the betwenness
centrality of the edges in the new network is computed, and a new edge is remov-
ing using the same criteria, and this process is repeated until the resulting network
is disconnected. By then, it has been divided into two communities. Assuming we
have an efficient function to compute the edge betweenness centrality for a network,
denoted by edge bc, the pseudocode for splitting it into two communities is detailed
in Algorithm 3.1.

Algorithm 3.1 Finding 2 communities

Start with G, define H = copy(G)
while G is connected do
Compute bc = edge bc(H)
Choose e∗ = argmine∈edges(H)(bc)
Update H = H. remove edge(e∗)

end while
return H

If more than two communities are necessary, say r of them, this process can be
continued until the output network H has r disconnected components [10].

3.2. Efficient recursive computation of Edge Betweenness Centrality.
It has now become clear that a fast way to compute the edge betweenness centrality is
desired to split networks cheaply and efficiently. With this aim in mind, we will define

4 J. CHICO VÁZQUEZ

the source edge betweenness centrality. For this, we choose a source node a, and use
a recursive procedure to compete the source edge betweenness centrality efficiently,
with the algorithm detailed in this section. Once this is done we can choose a another
source node and iterate. We define the source edge betweenness centrality by [10]

yαβa =

N∑
b=1

mαβ(a, b)

pab

The intuition behind this definition is just fixing a in (3.1). The key idea to com-
pute the source edge betweennes centrality is to build a directed shortest path graph
(DSPG) which encodes the shortest paths from each node to the source node a. Then
starting from the leaf nodes (in the directed graph these are the nodes which have no
edges into them), we can compute the source edge betwenness centrality for an edge
joining nodes α and β recursively in the following way [10]:

(3.2) yαβa =

N∑
b=1

mαβ(a, b)

pab
=

paα
pαβ

1 +
∑
b∈Nβ

yαβb

Where Nβ is the set of neighbours of β in the directed shortest path graph.

Computationally we don’t assemble the directed shortest path graph. Instead we
use a two stage procedure. First, we do a forward sweep from node a, (known as
breadth search first (BSF)), to compute

1. Which nodes are reachable from the source node. This is stored in a list L1.
Do note that in our testing it is assumed the graph is connected and hence
L1 should be a list of ones.

2. pab for all b, the number of shortest paths between nodes a and b. These
variables are stored in a list L2

3. Store the order in which nodes are added to the queue (the order in which
they are explored). This ordering is stored in a list M .

4. Store the distances from the explored nodes to the source node a in a list L3.
Each of these variables are stored in arrays or lists. The pseudocode for the forward
sweep is available in Algorithm 3.2. It is important to note that this forward sweep is
intimately related to Dijkstra’s algorithm [5] to find the shortest paths between two
nodes in a graph, although it works in a more general way and its output is optimized
to be used in the second stage of source edge betwenness centrality computation,
which is discussed next. Moreover, the specific shortest paths between any two nodes
is not relevant for centrality calculation.

The second stage is a backward sweep starting from the leaf nodes (these are the
nodes were you can’t travel any further away from the source node once you reach
them). For each edge (α, β) connected to a leaf node β, set the edge centrality to [10]

yαβa =
paα
pαβ

Then for nodes β closer to the source, identify the neighbours b ∈ Nβ and add yβba
to a running total. For each α where β ∈ Nα, add 1 to the final and multiply by paα

pαβ
,

using (3.2). The pseudocode for the backward sweep is available in Algorithm 3.3 .
Finally, we can get the edge betwenness centrality by iterating over all nodes

a as source nodes and computing (a one half factor is included to account for over

EDGE BETWEENNESS CENTRALITY 5

Algorithm 3.2 Forward sweep: starting from node a, graph G with N nodes.

Initialize an array L1 = zeros(N) marking all nodes as unsearched
Initialize an array L2 = -1 storing the distance from the source node
Initialize an array L3 = zeros(N) storing the number of shortest paths
Initialize a list M = [a] storing the order in which nodes are searched
L1(a) = 1 as the source node is reachable from itself
L2(a) = 0
L3(a) = 1
Set i = 1
while i < length(M) do
n = M[i]
i = i+1
for j with Ajn = 1 do

if L1(j) = 0 then
L1(j) = 0
L2(j) = L2(n) + 1
L3(j) = L3(n)

else if L2(j) = L2(n) + 1 then
L3(j) = L3(j) + L3(n)

end if
end for

end while
return L1, L2, L3,M

counting)

yαβ =
1

2

∑
a=1

yaαβ

3.3. Floating point operation count and cost analysis. The performance
of the algorithm will be evaluated by counting the total number of floating point
operations, as using timing measurements is not reliable for code which is not highly
optimised (as is the case now). The overall cost to compute the edge betwenness
centrality of a graph with N nodes and L edges using the algorithm described in
subsection 3.2 is O(N(N + L)).

We can see this by noting that the computation requires using the N nodes
as source nodes, and each source edge betwenness centrality computation requires
O(N+L) flops. Hence, O(N(N+L)) in total to compute edge betweenness centrality.

It is important to node that for most networks N < L (and very often N << L) so
the dominant factor is NL. Indeed if the random graph is generated randomly using
the most basic random graph generation scheme, Erdos-Renyi [6], then L ∼ p

(
N
2

)
∼

N2 and the cost to compute the edge betwenness centrality scales as as O(N3). Here
p ∈ [0, 1] is the probability of placing an edge between any two nodes.

It is also important to see why the computation of the source edge betwenness
centrality is O(N + L). We can justify this by noting that for a complete graph, the
forward sweep requires us to visit the N nodes in the graph, and for each node we
must consider all its neighbours. Hence, if we assume the average degree of a graph
is O(1) (reasonable for large real networks), this will require O(1) flops per node, and
O(N) in total for the forward sweep.

6 J. CHICO VÁZQUEZ

Algorithm 3.3 Backward Sweep, using as inputs the outputs from Algorithm 3.2

edge bc = zeros(L)
for j = 1, . . . , N do
β = M. pop(end)
running total = 0
alphas = []
for b with Abβ = 1 do
if L2(b) = L2(β) + 1 then
edge = (β, b)
running total = running total+ edge bc(edge)

else if L2(b) = L2(β)− 1 then
alphas . append(b)

end if
end for
for α ∈ alphas do

edge = (α, β)

edge bc(edge) = L3(α)
L3(β)

(1 + running total)

end for
end for
return edge bc

Similarly, the backward sweep requires us to essentially consider each edge in the
graph, and thus it requires O(L) operations in total. Hence, O(N +L) flops for each
source edge betwenness centrality calculation.

For the task of community detection we would need to repeat the calculation K
times, where K is the number of edges we remove before the graph becomes discon-
nected. In general we can’t know K before hand, but we expect it to be much smaller
than either N or L.

Several speed up procedures come to mind to reduce this cost. For community
detection, we might suggest not repeating the computation after removing one edge,
and instead also removing the edge with the second largest betwenness centrality from
the graph, and only recalculating centrality every other, or every three edges removals.
This will definitely reduce the cost but the effect it will have when detecting relevant
communities is hard to predict.

To reduce the cost of the edge betwenness centrality computation itself, a possible
suggestion is to not use nodes with low degree as source nodes, or perhaps use only a
subset of the nodes as source nodes, sampled randomly for each calculation. Again,
this will certainly reduce the cost but the centrality calculation will be incorrect.
However, this might not be as catastrophic as it might appear, since for the community
detection task only the relative values of the centrality are required. In particular we
only care about the edge with the largest centrality. Hence we might hope that using
only a sample of nodes as source nodes might still give us the node with the highest
centrality accurately.

3.4. Implementation. The source edge betwenneess centrality algorithm was
implement in Python. It is built upon the Python module Networkx, a package
designed to work with large networks. The implementation only uses the package to
access the graph, as the data structures offered are easy to work with. The code is
available in the corresponding .zip file.

EDGE BETWEENNESS CENTRALITY 7

4. Evaluating the performance of the algorithm for the community
detection task. The algorithm’s ability to detect communities within a graph will
be tested using graphs generated by the stochastic block model (SBM).

4.1. The stochastic Block Model. The stochastic block model was first intro-
duced by Holland et. al. [11]. It is a model for graph generation which by construction
creates structured graphs, meaning that it is more likely to place edges within com-
munities than between them. Although there are simpler models to generate random
graphs, such as Erdos-Renyi [6], Barabasi-Albert [15], or Watts-Strogatz [19] which
can account for phenomena observed in real world networks such as high clustering,
”small worlds” and power-law degree distributions, they are not prone to generating
clear communities, nor do they incorporate a parameter or mechanism that controls
the formation of communities. Hence, it is necessary to use the SBM to test the
centrality algorithm.

Mathematically the SBM takes the following parameters as inputs:
• The number of communities, r
• The number of nodes within each community, Ni for i = 1, 2, . . . , r
• P , a symmetric r×r matrix, such that its (i, j) entry Pij is the probability of
having an edge between nodes in communities i and j. In particular, for this
model to produce networks with a clear community structure we expect P to
be diagonally dominant, so that edges are more likely to be placed within a
community instead than between them.

We then generate a random sample from the above distributions. For the purpose of
testing the algorithm we will use a simple form for the matrix P :

P = pIr + q(J − Ir)

where J is a matrix of ones, i.e. Jij = 1 for all its entries. p is the probability of
placing an edge within a community, and q the probability of placing an edge between
communities. In particular, during testing r will be constrained to r = 2. We can
denote this parameter space by (r, p, q). We can see examples of graphs generated by
this setup in Figure 1 and Figure 2

Fig. 2. Network generated using the stochastic block model with 3 communities

4.2. Testing methodology. To test the centrality algorithm for a network with
2 communities (r = 2) the following scheme was used:

• Fix a number of nodes per community Ni = N , independent of i for now.
• Fix a value for p, the probability of placing an edge between nodes in the
same community.

8 J. CHICO VÁZQUEZ

• Select the values of q we are interested in analyzing ,{qi}i.
• Fix M , the number of SBM graphs generated for each value of q
• For each qi generateM SBM graphs with parameters Ni, r = 2, p, qi. Split the
graph into two communities using the edge centrality algorithm from section 3
and check if it matches the communities used as inputs for the model. Store
the average success rate for each qi

It is interesting to add another degree of freedom to the problem. In the above
scheme, all communities have the same number of nodes. This is not realistic, i.e.
in a school the two most clear communities are teachers and students, which are not
equal in number. To account for this we can draw Ni randomly for each i to generate
networks with communities of different sizes, and repeat the aforementioned testing
procedure with this new stochastic aspect.

4.3. Results. The agglomerated testing results are presented in Figure 3. The
algorithm was tested using the aforementioned scheme for several values of the pa-
rameters, with particular emphasis placed on varying Ni. The probability of placing
an edge between two nodes in the same community, p was fixed to 0.65.

Generally, the accuracy of the communities drops rapidly at around q ∼ 0.20. For
values greater than q ≥ 0.30 the algorithm looses all predictive power when finding
communities.

As a general rule, the algorithm will be more precise when the graphs have more
nodes, but this is expected as the communities will be more pronounced and hence
there will be relatively fewer ”connection” nodes, and thus the centrality algorithm
will be more accurate.

Fig. 3. Testing results. The average success rate when predicting the communities is plotted
against the probability of placing an edge between nodes in different communities

5. Competing algorithms for Community detection. In this section two
algorithms for community detection are presented schematically. Both can be formu-
lated as optimization problems which can be solved efficiently using numerical linear

EDGE BETWEENNESS CENTRALITY 9

algebra. Comparisons are made to the centrality algorithm, and the benefits and
shortcomings of each procedure are discussed. The algorithms are presented from a
theoretical perspective and with a very strong emphasis in community detection.

5.1. Modularity Maximization. We define the modularity of a group of nodes
Sa of a graph by [14, 10]

Ma =
1

2L

∑
i∈Sa

∑
j∈Sa

(
Aij −

kikj
2L

)
If we set all nodes into one group its modularity will be zero, so the idea is to split
the graph into two groups Sa and Sb in such a way that the total modularity

M = Ma +Mb

is maximized. (M is bounded above by one [1]). This is done via Modularity maxi-
mization. We will restrict the problem to splitting the graph into 2 communities, a
and b. The key idea is building the modularity matrix, B, with [13, 17]

Bij = Aij −
kikj
2L

Now we define the partition vector s, with si = 1 if node i is in group b, and si = −1
otherwise. Then 1

2 (sisj +1) is 1 if both nodes in the same group, zero otherwise, and
the modularity for a given partition is

M =
1

4L

∑
i∈Sa

∑
j∈Sa

(
Aij −

kikj
2L

)
(sisj + 1) =

1

4L
sTBs

Which we wish to maximize subject to si = ±1. This is hard to solve in general. One
approach relaxes the constraint to maximizing the above subject to |s̃|2 = N , with
the entries of this vector allowed to be real numbers, not just ±1 (we will correct this
later) [13]. Then we can maximize this with the largest eigenvalue of the modularity
matrix, λ1. We re-scale the corresponding unit eigenvector v1 to

√
Nv1 to satisfy the

constraint and then

M̃ =
1

4L
s̃TBs̃ =

Nλ1

4L

Finally, we adjust s̃ by choosing si = 1 if s̃i > 0 and si = −1 otherwise. This
procedure is known as the sign-cut or zero-threshold cut [17] .

5.2. Laplacian graph partitioning. As opposed to modularity maximization
this will be a minimization problem. The idea is to split a graph into two groups of
nodes (a and b, as before) where the number of links crossing from one group to the
other (defined as the cut size, c) is minimized. Mathematically, we set si = 1 if node
i is in group a and si = −1 otherwise, as before. Then, for a given partition (which
is just a vector s of ±1 entries the cut size is [7]

c =
1

4

∑
i

∑
j

Aij(1− sisj)

this is what we wish to minimize. However, it is useful to know that∑
i

∑
j

Aij = K =
∑
i

∑
j

sisjδijki

10 J. CHICO VÁZQUEZ

Going to back to Definition 2.2, and remembering the Laplacian matrix L = D − A,
it turns out that we can write the cutsize as [13]

c =
1

4
sTLs

In contrast to modularity, we want to minimize this. The trivial solution is all nodes
in a single group, where c = 0, which works by taking s = 1√

N
ones(N) ∈ ker(L).

However if we don’t allow this, and the problem is constrained to positive cutsizes, we
can use use s̃ = VN−1, the eigenvector associated with the second smallest eigenvalue
(known as the Fiedler vector [2]), λN−1, known in the literature as the algebraic
connectivity [7], normalized to have length

√
N . Then the cut size is c = 1

4NλN−1.
Finally, we can repeat the final step in modularity maximization to get a vector of
±1’s entries, using the sign-cut approach.

5.3. Cost for each competing algorithm. As seen in section 3 the cost to
compute edge betwenness centrality is O(N(N + L)), and the cost to divide a graph
using edge betwenness centrality is O(KN(N +L)), where K is the number of edges
we remove before the graph becomes disconnected. When a graph has community
structure we expect K to be small compared to both N and L.

For modularity maximization the problem reduces to the power method. Hence,
for each iteration we will have to perform a matrix-vector multiplication, requiring
O(N2) flops in general. However for sparse networks, as in the case of most real
networks, this can be reduced to O(N + L). Finally, if we require q iterations of the
power method until the convergence is good enough, the total cost for performing
modularity maximization will be O(q(N +L)). However, on networks with the small-
world property1 it has been observed that q ∼ logN , giving a final floating point
operations estimate of O(logN(N + L)) [17]

For the last algorithm considered, without going into too much detail as it is not
the main topic of this paper, and restricting the problem to the case λN−1(L) < 1
(very general), we can then transform the problem into a power iteration like scheme
with similar cost as modularity maximization. [8]

5.4. Differences between the algorithms. In this brief section we will walk
through some of the main differences between the three algorithms discussed. Particu-
lar attention will be paid to the shortcomings and problems for each of the algorithms,
as this will be helpful to identify cases where using the centrality algorithm will be
recommended.

Starting with the modularity algorithm, an advantage is that it can be modified to
the more interesting case of a weighted graph without much theoretical complication,
where instead of an adjacency matrix A we have a matrix with weights W (which we
can assume has non-negative entries), then the modularity of a group of nodes is

Ma =
1

2L

∑
i∈Sa

∑
j∈Sa

(
Wij −

kikj
2L

)

where ki = Dii =
∑N

j=1 wij , and perform modularity maximization on this matrix.
The same is true for Laplacian graph partitioning using a weighted Laplacian.

1In essence, a network has the small world property when the length of the largest shortest path
in the graph scales as ∼ logN , where N is the number of nodes.

EDGE BETWEENNESS CENTRALITY 11

Both Modularity Maximization and Laplacian Graph partitioning benefit greatly
from being expressed as linear algebra problems (over R), as it means the widely
developed and used tools from numerical linear algebra are applicable. Hence, as
seen in the previous section they are both less expensive to run in most networks.
However they have important flaws that must be considered before they are used in
real problems.

Modularity maximization suffers from a resolution limit which greatly reduces its
ability to detect small communities in large networks. Essentially, small communities
are lumped together into one big community if the graph is sufficintly large. This
shortcoming is explored in detail by Fortunato et. al. [9]. In practice this means that
when we use modularity to find communities in a large graph we will be unable to
”resolve” small communities, even if we expect them to exist.

As for Laplacian graph partitioning, it has several important shortcomings. Most
importantly, placing a node of degree one (just a single neighbour) on a group by itself
achieves the minimum cutsize, exactly one. (And nodes of degree one are common
in most real networks). Evidently this is not desirable and a possible fix is to place
all nodes with s̃i < Median(s̃) in a single group, instead of the standard sign-cut ap-
proach. However, this fix will create communities of equal sizes, which is not desirable
either as it might not be representative of the community structure. In light of this,
it is reasonable to claim Laplacian graph partitioning suffers from important pitfalls
which heavily restrict its ability to compete both with modularity and centrality based
methods when detecting communities in real graphs.

6. Conclusions and future work. All in all we have compared the edge be-
tweenness centrality approach to community detection with two numerical linear al-
gebra based partitioning schemes. We can summarise the finding by saying that edge
betweenness centrality is a robust procedure for community detection, although it is
more expensive to run in comparison to the other algorithms, which in turn suffer
from more fundamental limitations and problems.

In the years since the algorithm presented here was introduced many advances
in the field of network science have taken place, driven by the mayor role data has
played since the start of the information age. In particular, it is good to highlight
the addition of stochastic methods to accelerate centrality computations. Newman
introduced a new algorithm which uses random walks to estimate the node centrality
of a network [16]

When should you use the centrality algorithm. For networks with a geographical
context (internet cables, some social and biological networks), centrality will provide
insight by finding the most important nodes. As mentioned before, the underwater
transatlantic internet cables are perhaps the best example. In social or biological
networks we can think of edges with high centrality as choke points: they might
represent a mountain pass, a river crossing, a border point between two countries...
Hence it is reasonable to argue centrality better fits this kinds of problems, where the
communities might be defined by geography, instead of using an optimization based
a approach which might be blind to this aspects.

Future work. As outlined in subsection 3.3, it would be interesting to study what
is the effect of only using a fraction of the nodes as source nodes in the algorithm. This
has the potential to accelerate the computation drastically. Furthermore, a second
possible interesting approach is to not repeat the computation of the edge betweenness
centrality after removing one edge from the graph, and only repeat the computation
after 4,5, ... edges have been removed (or some other multiple). This could also

12 J. CHICO VÁZQUEZ

be incredibly beneficial for speeding up the community detection procedure. However
due to time and computation power constraints studying these ideas exhaustively was
not possible. Some related work was done by Ulrik et. al. [3].

Another avenue of further study is incorporating stochastic methods as presented
by Newman [16], where he proposed using random walks to measure centrality. This
idea is both intuitive (we expect important nodes to be visited more often by random
walkers) and elegant, for it benefits from the recent advances such as Ergodic Theory
and Markov Chains [18].

Finally, studying the stability of centrality measures to perturbations in the
weights of edges, the number of nodes or edges is also important. This is because
most real networks are built from datasets which might be incomplete or contain mis-
takes, and before drawing conclusions from centrality applications it is essential to
understand how the missing information might affect the result.

Acknowledgments. The author is grateful to Dr. Andrew J. Horning for his
support and guidance in this project.

REFERENCES

[1] A.-L. Barabási, Network science, Cambridge University Press, Cambridge, United Kingdom,
2016 - 2016.

[2] A. Bertrand and M. Moonen, Distributed computation of the fiedler vector with application
to topology inference in ad hoc networks, Signal processing, 93 (2013), pp. 1106–1117.

[3] U. Brandes, On variants of shortest-path betweenness centrality and their generic computa-
tion, Social networks, 30 (2008), pp. 136–145.

[4] A. Clauset, M. Newman, and C. Moore, Finding community structure in very large net-
works, Physical review. E, 70 (2004), pp. 066111–066111.

[5] E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1
(1959), pp. 269–271.

[6] P. Erdös and A. Rényi, On random graphs i, Publicationes Mathematicae Debrecen, 6 (1959),
p. 290.

[7] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal, 23 (1973),
pp. 298–305.

[8] M. Fiedler, Laplacian of graphs and algebraic connectivity, Banach Center publications, 25
(1989), pp. 57–70.

[9] S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proceedings of
the National Academy of Sciences - PNAS, 104 (2007), pp. 36–41.

[10] M. Girvan and M. Newman, Community structure in social and biological networks, Proceed-
ings of the National Academy of Sciences - PNAS, 99 (2002), pp. 7821–7826.

[11] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social
networks, 5 (1983), pp. 109–137.

[12] M. Newman, Fast algorithm for detecting community structure in networks, Physical review.
E, 69 (2004), pp. 066133–066133.

[13] M. E. J. Newman, Finding community structure in networks using the eigenvectors of matri-
ces, Physical review. E, 74 (2006), pp. 036104–036104.

[14] M. E. J. Newman, Networks, Oxford University Press, Oxford, United Kingdom ;, second
edition. ed., 2018.

[15] M. E. J. M. E. J. Newman, The structure and dynamics of networks, Princeton studies in
complexity, Princeton University Press, Princeton, N.J, 2006.

[16] M. J. Newman, A measure of betweenness centrality based on random walks, Social networks,
27 (2005), pp. 39–54.

[17] A. POTHEN, H. D. SIMON, and K.-P. LIOU, Partitioning sparse matrices with eigenvectors
of graphs, SIAM journal on matrix analysis and applications, 11 (1990), pp. 430–452.

[18] X. Wang, G. Chen, and H. Lu, A very fast algorithm for detecting community structures in
complex networks, Physica A, 384 (2007), pp. 667–674.

[19] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature
(London), 393 (1998), pp. 440–442.

	Introduction
	Network Science Preliminaries
	Edge Betweenness Centrality
	Edge Betweenness Centrality as a Community detector
	Efficient recursive computation of Edge Betweenness Centrality
	Floating point operation count and cost analysis
	Implementation

	Evaluating the performance of the algorithm for the community detection task
	The stochastic Block Model
	Testing methodology
	Results

	Competing algorithms for Community detection
	Modularity Maximization
	Laplacian graph partitioning
	Cost for each competing algorithm
	Differences between the algorithms

	Conclusions and future work
	References

